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1 Introduction

Clinical practice guidelines aim to standardize medicine using evidence-based recommendations,

yet large inefficiencies in care delivery remain. Policymakers argue that improving adherence to

guidelines can both reduce costs and improve quality by getting care to the patients who would

benefit most [Runnacles et al., 2018]. Critics of guidelines, a group largely made up of physicians,

argue that diagnostic rules can be overly prescriptive and ignore the role of expertise, suggesting

that non-adherence to guidelines is warranted in some cases [Timmermans and Mauck, 2005].

How much and to which guidelines should health care providers adhere? These questions have

important implications for health policy, patient health, and especially for the design of physi-

cian payment models that increasingly incentivize guideline-adherent care rather than reimbursing

based on the volume of care [CMS, 2016]. Both adherence and non-adherence to guidelines are

well-studied, but treatment decisions that purposely depart from guidelines are less well understood

[Abaluck et al., 2016, 2020, Chandra and Staiger, 2014, Mullainathan and Obermeyer, 2021]. This

kind of discretionary decision making – where providers use their judgment to decide whether to

test, treat, or act on the results of a positive test – likely depends on the quality of guidelines them-

selves and can help inform the extent to which health policy should incentivize strict guideline

adherence.

In this paper I study one clinical decision, the diagnosis of hypertension, where departures from

guidelines can be identified using bunching estimation. Hypertension, also known as high blood

pressure, is estimated to affect over 30% of adults globally [Mills et al., 2020]. It is diagnosed

through measuring blood pressure with a cuff, a method that is known to result in many false

positives [Baron, 2018].

While the clinical practice guidelines for hypertension are very simple - diagnose if blood

pressure is at least 140/90 mmHg - diagnostic mistakes are common because accurately measur-

ing blood pressure can be very challenging [Baron, 2018]. Instantaneous blood pressure, which

providers observe in clinic, fluctuates around the patient’s long-term or true blood pressure, the lat-

ter being a strong predictor of risk for cardiovascular events [Muntner et al., 2019]. Simple actions
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can change blood pressure within seconds, mostly working to increase it: drinking coffee, sitting

with one leg crossed over the other, and for some patients, speaking with a physician [Muntner

et al., 2019]. Substantial effort is given to developing systems to improve measurement precision

such as averaging multiple measures, making sure the patient is sitting correctly, and waiting a few

minutes after the doctor walks in. Still, in a busy primary care clinic where providers spend just

a few minutes with each patient, knowing whether a patient testing over 140/90 mmHg is a true

positive, and diagnosis with hypertension should occur, or a false positive, and diagnosis should

not occur, requires substantial clinical skill.

This noise in blood pressure allows me to identify instances where providers may have used

their discretion to diagnose or not diagnose a patient. If a provider believes a patient’s test result

is a false positive, they may retest until they get a number that aligns with their priors. Or, for

some patients, they may take the average of multiple measurements. Or, they might simply record

a different number in the medical record than the one actually measured. With enough data, these

behaviors are observable as bunching in the distribution of blood pressure under the 140 threshold,

which would otherwise be smooth.1 I quantify this behavior using a bunching estimator and in-

terpret it as a behavioral response to the diagnostic threshold for hypertension. This allows for an

investigation into when and how health care providers use discretionary decision-making in one of

medicine’s many ‘grey areas’.

I estimate the magnitude of bunching in blood pressure, my measure of discretionary decision-

making, separately at 257 public primary care clinics in Chile, using visits from 619,907 unique

patients. Taking advantage of the fact that in Chile’s public health care system patients are assigned

a primary care clinic based on their home address, I use a double difference approach to estimate

the impact of discretion. Specifically, I compare higher vs. lower discretion clinics, and patients

recorded as below vs. above the diagnostic threshold.

1I expect excess mass below the diagnostic threshold and not above it because blood pressure

measured in a medical setting, such as primary care, is well-known to be higher on average than if

the same patient’s blood pressure was measured elsewhere [Muntner et al., 2019].
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I find that approximately 10% of clinics exhibit discretion in the diagnosis of hypertension,

and at these clinics, 6% to 62% of patients whose test results were expected to be just above the

diagnostic threshold are instead recorded just below it. While it is possible some patients are

reassigned from hypertension negative to positive, both provider incentives and the magnitude

of bunching below the threshold suggest this behavior should be minimal. These results provide

evidence that threshold-based guidelines, which are very common in medicine, can distort provider

behavior. I then find that clinical practice guidelines are adhered to similarly at higher and lower

discretion clinics. This suggests that the value of blood pressure recorded in the electronic health

record does guide decision-making, whether it was manipulated by the provider or not.

Although hypertension itself does not have symptoms, if left untreated, it increases the risk

of adverse cardiac events. If discretionary decision-making meant that providers were incorrectly

reclassifying true positives as false positives we would expect to see more of these hospitalizations

among patients at high discretion clinics who were classified below the diagnostic threshold. In-

stead I find the opposite: a one standard deviation increase in discretion leads to 1.8 percentage

point (pp) fewer strokes per 100 patients in the short term (within 3 months), and 6.1pp fewer

strokes within a year. Results are similar for heart attacks with 2.8pp and 3.5pp fewer heart attacks

per 100 patients, within 3 and 12 months respectively. These results suggest not that discretion

itself reduces cardiovascular hospitalization, but that at high discretion clinics, patients who ini-

tially tested positive and were reassigned as hypertension negative had lower cardiovascular risk.

In other words, providers at high discretion appear to use their discretion to move healthy patients

below the threshold while keeping higher-risk patients above it.

How do providers identify low-risk patients who happened to have tested positive? I investigate

heuristic thinking as a possible mechanism, finding that patients with characteristics representative

of high cardiovascular risk, such as older males, are less likely to be classified as hypertension

negative at higher compared to lower discretion clinics. I also observe less bunching in the blood

pressure distributions of male patients and those over 65, providing further evidence that providers

are less likely to consider their positive tests as false positives. These departures from the clinical
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practice guidelines, which, in Chile consider blood pressure as the sole determinant of hypertension

status, suggest providers incorporate additional information into their decision-making process;

behavior that aligns with the representativeness heuristic.

Last, using placebo outcomes, I do not find evidence to suggest that providers use their discre-

tion to make different clinical decisions, sort overall healthier patients under the threshold, or that

high discretion clinics provide higher quality care on average, minimizing concerns of unobserv-

able effects of clinic quality. I also do not find bunching in other biomarkers, such as weight and

cholesterol, that were measured during the same visit as blood pressure.

This paper contributes to our understanding of how health care providers use expertise and

make decisions, sometimes with cognitive shortcuts and rules of thumb. In recent work in this area,

Singh [2021] documents heuristic thinking in the delivery room, showing that clinical-decisions are

affected by recent adverse events experienced by the provider. Olenski et al. [2020] and Coussens

[2018] both find emergency room providers are subject to left-digit bias in age - a heuristic that

leads to sub-optimal test decisions. These papers find that heuristic thinking can lead to biased

decisions and poor outcomes for some patient-groups. In the setting of hypertension diagnosis,

adding more information to the decision process through the use of heuristics appears to be bene-

ficial. This is likely due to the too-simple guideline given the noisy biomarker, which may not be

the case for other clinical scenarios studied.

This paper aims to make two additional contributions. First, to our understanding of the allo-

cation of clinical resources. Focusing on the fact that health care providers determine how many

and which patients receive medical tests and treatments, this literature uses observational data to

examine the volume and cost of care, as well as the quality of clinical decisions. For example,

Abaluck et al. [2016] and Chan and Gruber [2020] find that providers’ testing decisions are inef-

ficient based on patient risk, while Chandra and Staiger [2014] and Mullainathan and Obermeyer

[2021] show heart attack tests and treatment are misallocated in emergency departments compared

to an optimal rule. Clinical skill, including the ability to test the ‘right’ patients is increasingly

being recognized as an important and modifiable input to quality health care [Chan et al., 2022,
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Currie and Zhang, 2025].

It is well known that when incentives or policies change discontinuously at a threshold, be-

havior can be distorted [Kleven, 2016]. This distortion can occur even when the decision-maker

does not benefit directly, but instead distorts their decisions to change outcomes for a beneficiary

such as a patient or a student. This paper is closest to Diamond and Persson [2016], who use

bunching methods to identify and understand teacher discretion in national test grading. They find

that teachers selectively increase some students’ scores from below to above the pass threshold.

Teachers do this more for students who scored lower than their own average on previous test (i.e.

students who ‘had a bad test day’), analogous to patients who had a bad blood pressure test day.

Bunching theory and methods have been used to study patients’ response to health insurance

[Einav et al., 2015, 2017], providers’ response to health insurance and incentives [Hernández-

Pizarro et al., 2020, Rodríguez-Lesmes and Vera-Hernández, 2021], and hospital wait times [Gru-

ber et al., 2018]. This paper expands this literature by investigating bunching in the context of

diagnostic decisions. Given the vast number of medical decisions made using thresholds that cat-

egorize continuous biological measurements, there are likely many opportunities to use bunching

to understand how and why clinical decisions are made.

2 Setting

2.1 Health and Healthcare in Chile

Chile has a similar burden of disease to other high-income countries: non-communicable diseases

account for 82% of years of life lost [PAHO, 2020]. The prevalence of hypertension is approx-

imately 28%, compared to 31% in the United States [Lanas et al., 2020, Ostchega and Nguyen,

2020].

Chile has both public and private healthcare systems. All residents are defaulted in to the public

system, where insurance is provided by the federal government and funded primarily through a

universal 7% tax on earnings (Fondo Nacional de Salud, or FONASA). Approximately 19% of the
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population opts-out of the public system by purchasing private insurance. Those who remain in

the public system are assigned a primary care clinic based on their home address, which lessens

concerns about selection into clinics by level of discretion. Primary care is considered to be of

relatively high quality and organized, and is obtained either at a clinic, or in the case of rural areas

with a single medical center, a hospital [Bossert and Leisewitz, 2016]. Hereafter, I refer to both

types of facilities as clinics.

Primary health care received in the public system is low-cost, and copayments are further re-

duced for chronic diseases, including hypertension, as they are a priority policy area for the federal

government [Aguilera et al., 2015]. Medications for chronic diseases, such as anti-hypertensives,

are free after a patient is diagnosed.

Supply-side payment and incentives are also standardized nation-wide. Payment from the pub-

lic insurer to primary care clinics is capitated and determined by the number of registered patients

and their risk [JLN, 2017]. Healthcare providers in the public system are employed by the govern-

ment either on a annual, salaried basis, or a fixed-term contract basis. Some primary care providers

also face financial incentives to improve quality of care in key areas. Bonuses can be as large as

20% of pay, however the goals and metrics are not clear and change frequently [JLN, 2017]. Im-

portantly for this project, the bundle of incentives faced by providers does not indicate that there is

any reason providers would avoid diagnosing or treating a patient with a (marginally) positive test

for hypertension. If anything, they might be more incentivized to diagnose a relatively healthier

patient, as this group is then more likely to achieve controlled hypertension.

The Chilean public health care setting therefore offers several advantages: public, primary care

clinics are centrally organized by the Ministry of Health meaning data from primary care, hospitals,

and pharmacies is available and able to be linked country-wide. This analysis therefore includes a

large cross section of patients in terms of location, socioeconomic status, wealth, and health from

a population with limited access to care issues. These patients also receive care from clinics that

face similar payment structures, incentives, and organization.
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2.2 Medical Context

An estimated 1.4 billion people have high blood pressure making it the largest contributor to both

all-cause and cardiovascular mortality globally. Despite being a strong cardiovascular risk factor,

hypertension lacks symptoms earning it the name ‘the silent killer’ [WHO, 2013]. For this reason

it is common practice to measure patients’ blood pressure at every primary care clinic visit along

with vital signs, as this is the only way to know if blood pressure is high. Chile’s clinical practice

guidelines define hypertension as blood pressure≥140/90 mmHg [MINSAL, 2010, 2017]. Hy-

pertension can be prevented and treated with low-cost and effective medication and with behavior

change including regular exercise and improving diet.

Accurately measuring blood pressure is challenging because instantaneous or short-term blood

pressure fluctuates around the patient’s long-term or true blood pressure. Blood pressure is influ-

enced in the very short term by stimuli such as caffeine intake, sleep, nervousness, the measurement

method, and for some patients, the presence of a health care provider [Muntner et al., 2019]. The

influence of a health care provider on blood pressure, also known as ‘white coat hypertension’, is

well documented and typically causes blood pressure to be higher when measured in clinic, due to

nervousness or stress, compared to when measured at the patient’s home [Muntner et al., 2019].

Providers are alerted to these challenges and to common errors that can lead to inaccurate blood

pressure measurement in Chile’s clinical practice guidelines (see also table A4).

When making a diagnosis the provider observes instantaneous blood pressure and not true,

long-term blood pressure. Substantial effort is devoted to creating training materials (e.g. Stergiou

et al. [2020]), technology (e.g. Miao et al. [2020]), and research (e.g. Baron [2018]) to improve

the accuracy of blood pressure measured in clinic. Still, it is widely understood that blood pressure

is often measured with error. Here, I argue that uncertainty in whether blood pressure measured in

clinic accurately reflects the patient’s true, underlying health status makes this diagnostic decision

one where a providers’ clinical skill and use of discretion are crucial.

Noisy measurement contributes to anomalies in recorded blood pressure, including rounding

down and left-digit bias; the over-representation of numbers that end in zero, which have long been

7



documented in the medical literature [Alcocer et al., 1997, Wilcox, 1961]. An example of left-digit

bias in blood pressure measurement is shown in figure 1, panel B. These numerical anomalies have

not been documented in other biomarkers, either those measured at primary care visits (such as

pulse), or in laboratories (such as hemoglobin A1c). Figure A4 shows I do not observe bunching

or end digit bias in other biomarkers from the same primary care encounters as when patients’

blood pressure was recorded. [Figure 1 here]

Chile’s clinical practice guidelines for hypertension state that patients should be diagnosed if ei-

ther systolic blood pressure is ≥ 140 mmHg, or diastolic blood pressure is ≥ 90 mmHg [MINSAL,

2010, 2017]. The guidelines also recommend measuring patients’ blood pressure twice during a

primary care visit, and then averaging the two values. Last, the guidelines recommend patients

with elevated blood pressure return for a second visit to confirm the diagnosis. Here, I observe

the visit where a new diagnosis occurred (whether the second of two visits or not), and I observe

the final blood pressure recorded in the visit (whether an average of two measurements or not).

While guidelines state patients should return soon after an elevated blood pressure reading to be

diagnosed, my data show this is rare in practice: in the full panel dataset spanning January 2013

to December 2018, among patients not diagnosed at a visit, only 28% return for a second visit in

the study period. Among those who do return, average number of days to the next visit is 234

overall (median 143 days), and 240 days among those with blood pressure ≥ 140 (median 130

days), suggesting low guideline adherence on the patient side.

This analysis focuses on systolic blood pressure and not diastolic blood pressure for several

reasons: formative research from the Framingham Heart Study concluded that systolic blood pres-

sure was more predictive of cardiovascular risk than diastolic [Kannel et al., 1971]. More recent

research has called these findings into question (e.g. Flint et al. [2019]), however the original find-

ings may be sticky. Second, systolic blood pressure may be more salient to clinicians because it

is written before or above diastolic blood pressure, i.e. 140/90 or 140
90 . The salience of systolic

blood pressure is reflected in the data, where I observe that diagnosis is more closely aligned with

the systolic value rather than the diastolic value. In my patient population, 21% of patients have
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discordant hypertension, that is, systolic above the diagnostic threshold but diastolic below, or vice

versa. Among these patients, the final diagnosis (hypertensive vs. not) aligns with the value of

systolic blood pressure in 63% of cases.

3 Data

3.1 Electronic Health Records

I primarily use electronic health records (EHRs) from Chile’s public health care system from 2013-

2018. These data record routine encounters between providers and patients in primary care and

include detailed diagnoses, biomarkers (e.g., blood pressure, blood glucose, weight etc.), demo-

graphics (age, sex), comorbidities, and some self-reported health behaviors (e.g., exercise, smok-

ing, alcohol use). Visit data was linked at the patient level to medication prescriptions (including

date, drug name, and quantity) and to the universe of hospitalizations (including ICD-10 codes for

diagnoses, date, and length of stay) in Chile over the same time period. Hospitalization records

are, importantly, from all public and private hospitals nationwide.

Several EHR software providers are used by public clinics, and my data come from the largest

provider. Among clinics that use said software, visits in the analysis dataset come from patients in

Chile’s cardiovascular control program (Programa de Salud Cardiovascular or PSCV), which has

been operating since 2002.

A patient is considered enrolled in the PSCV once they are diagnosed with one or more diseases

of interest: type 2 diabetes, hypertension, dyslipidemia, or have risk factors: a history of cardiovas-

cular disease (CVD), or smoke and are at least 55 years old. PSCV patients continue to seek care

at their assigned primary care clinic, and receive additional benefits, namely counseling about how

to manage their chronic disease, text-message reminders about upcoming visits, additional tests

such as for diabetic foot, and are asked to attend preventative care more frequently than non-PSCV

patients [MINSAL, 2017]. For this reason, my EHR data does not represent all patients seen by a

provider on a given day, but instead, the interactions providers had with PSCV patients. In figure
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A1 I use data from the National Health Survey to show that blood pressure is higher among PSCV

eligible patients compared to non-eligible patients, and a smooth distribution, lessening concerns

that the bunching results might stem from the EHR sampling frame. See section A.1.1 for more

details.

EHR data come from 257 clinics representing 113 municipalities (out of 345 in the country).

I link EHR at the municipality level to Chile’s National Socioeconomic Characterization Survey

(CASEN, 2015 wave), which is representative at the municipality level, to obtain socio-economic

characteristics.

To compare the distribution of blood pressure in the EHR to a nationally representative distri-

bution I use Chile’s National Health Survey (ENS, 2016-2017 wave), which is also representative

of the population at the municipality level.

3.2 Sample

To measure discretion and its impact, my sample includes primary care visits where hypertension

could be diagnosed, from patients aged 18-79 at ‘large’ clinics. Last, I restrict the sample to

patients who visited primary care at least 1 year before the end of the study observation period, so

that I can measure post-visit hospitalization over a sufficiently long period for all patients.

To do this, I first exclude visits where blood pressure was not recorded (2.4% of visits) and

patients under 18 or 80 and above (9.8%). Patients 80 and older are subject to a different diagnostic

threshold and goal for controlled blood pressure. Last, I exclude ‘small’ clinics with too few

visits for bunching estimation. I define small as clinics with below the median number of visits

(N=1265). This causes 52% of clinics to be excluded, but only 12.5% of patients. This leaves

N=619,907 patient-visits at N=257 clinics. See table A1 for further details on sample selection.

Table A3 compares included and excluded clinics in terms of patient and clinic characteristics.

Compared to excluded clinics, included clinics are almost two times more likely to be urban, are

in wealthier regions, and are in municipalities with more tertiary education; all characteristics

correlated with areas that are likely to have large clinics. Included clinics have a higher prevalence
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of patients with diagnosed type 2 diabetes, perhaps reflecting more healthcare utilization among a

wealthier population. The two groups are otherwise similar in terms of patient health.

Importantly, I also exclude visits from patients previously diagnosed with hypertension in order

to analyze interactions where a diagnostic decision could be made. Among PSCV patients, this

leaves individuals with type 2 diabetes (29%; categories are not mutually exclusive as patients

can have multiple diagnoses), dyslipidemia (46%), or cardiovascular disease risk factors (63%),

who are attending regular care at primary care clinics (table A2). I use each patient’s first observed

primary care visit to avoid over-representing blood pressure measures that are under 140/90 mmHg,

which could impact bunching estimates.

Table 1 describes the study population. The average patient is 58 years old with a body mass

index of 30.7, the low end of the obese category. Many are low-income, making less than $320

per month and over a quarter of patients live below the federal poverty line. Compared to the

total population of Chile, or even to the population that uses public, primary care, this is a high-

risk sample. Due to PSCV inclusion criteria we expect both adverse cardiac events and average

blood pressure to be higher in this group than the general public, which may also increase the

likelihood of observing bunching in blood pressure. Conversely, it is also likely that providers

are more attentive to a high blood pressure reading from this high-risk group compared to the

general patient population, which might lead to a lower probability of a behavioral response given

a positive test for hypertension. [Table 1 here]

4 Empirical Strategy

4.1 Measuring Provider Discretion With Bunching

The bunching approach uses discontinuities in incentives to measure behavior [Kleven, 2016].

Similar to regression discontinuity designs, bunching methods can be applied in settings with a

running variable and a threshold that determines treatment. In the case of bunching, the running

variable is manipulated (compared to a known counterfactual distribution) and selection with re-
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spect to the threshold is present. Under some assumptions, described below, this manipulation can

be interpreted as a behavioral response to the threshold.2

Here, I study bunching of blood pressure values that are recorded in electronic medical records,

and interpret bunching as a behavioral response by healthcare providers to the diagnostic thresh-

old for hypertension. Importantly, what is present here is manipulation of blood pressure that is

recorded by the provider in the electronic health record, and not precise manipulation of patients’

own health.

Using blood pressure as a running variable in which to study bunching offers several advan-

tages. First, because hypertension lacks symptoms and can be deadly, blood pressure measurement

is recommended at all primary care visits, alleviating any concerns of selection into testing. Sec-

ond, as a biological parameter its counterfactual population distribution is known. Third, it is a

setting with few frictions. That is, providers measure and record blood pressure themselves and

then decide the clinical action taken, if any. Thus, if they wish to, providers can precisely manipu-

late the measurement and outcome according to their beliefs about the patient.

4.2 Bunching Estimation

Examining raw distributions of blood pressure at the clinic level reveals that clinics vary not only

in the amount of bunching, but also in the extent to which providers round blood pressure to

numbers ending in zero (figure 1, panel C). Such over-representation of zeros is common in blood

pressure measurement and is thought to be driven by use of imprecise measurement tools [Greiver

et al., 2019]. This behavior is easily incorporated into bunching estimation to avoid overstating the

behavioral response.

To improve the fit of the bunching counterfactual I use a different specification for clinics with

a large amount of rounding to zero and for clinics with little rounding to zero. To classify clinics

I compare the expected (10%) to observed share of observations that end in zero. I define ‘high

2The majority of work using the bunching approach is in public finance and studies a behavioral

response to taxation (e.g. Chetty et al. [2011], Kleven and Waseem [2013], Saez [2010]).

12



rounding’ clinics as those where end digit zeros make up at least 20% of the clinic’s total blood

pressure measurements. All other clinics are ‘low rounders’. Results are not sensitive to this

classification, and are similar if a 15% or 30% threshold is used (see robustness tables A6, A7)

To quantify discretion at each clinic I compare the clinic’s observed distribution to the dis-

tribution that would exist in the absence of bunching. This counterfactual is recovered by fitting

a polynomial regression to the empirical density, excluding observations in a range around the

threshold where missing and excess mass is observed. To account for round number bunching I

add a set of round number fixed effects. Finally, I predict the counterfactual density for the whole

distribution and extrapolate into the bunching region, excluding the contribution of round number

fixed effects. For each clinic I separately estimate the following equation:

ni =
K

∑
k=0

βk pk
i + ∑

r∈R
ρr ∗1{pi = r}+

pu

∑
b=pl

γb ∗1{pi = b}+ εi (1)

Where ni is the number of observations in bin i at a given clinic, k is the order of the polyno-

mial, pi is the blood pressure midpoint in bin i. The first term models the smooth counterfactual

distribution of the running variable using a k-degree polynomial. The second term controls for

over-representation at round numbers, where R is a vector of numbers that end in zero, omitting

140 (the threshold) R = {80,90,100,110,120,130,150,160, ...,200}. The third term absorbs all

bins in the excluded region of the PDF (area that is affected by bunching), [pl, pu], using a set of

indicator variables 1{pi = b}, each with coefficient γb.

I estimate two versions of equation 1: for low rounding clinics data is collapsed into 2-unit

blood pressure bins, and for high rounding clinics data is collapsed into 5-unit blood pressure

bin. For both, my preferred specification does not exclude bins other than the bin containing the

diagnostic threshold at 140, as there is substantial variation across clinics in terms of where excess

mass is located, but little variation in where missing mass is located.3 In tables A6 and A7 I present

alternative specifications, varying the classification of clinics into ‘high’ vs. ‘low’ rounders, the

3For estimation I use the bunching package in R [Mavrokonstantis, 2019]. I use the package’s

default polynomial of 9. Results are robust to instead using 7-10 but change when a lower order
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polynomial used, the bin size, and the exclusion window around the threshold.

The estimate of the counterfactual distribution is the predicted values from (1) after omitting

the contribution of the dummies around the threshold, but not omitting the contribution of other

round-number dummies. [Kleven and Waseem, 2013]. To quantify the magnitude of discretion, I

compare the predicted density, (1), to the observed empirical density. Figure 2 shows two examples

of bunching estimation. Importantly, while bunching estimation is typically used to calculate labor

supply elasticities, here I simply use bunching to categorize clinics into those with vs. without an

observable behavioral response to the diagnostic threshold.

The bunching estimator returns the number of missing, if negative, or excess, if positive, ob-

servations at the diagnostic threshold bin divided by the height of the counterfactual. This normal-

ization allows for comparison of magnitudes across clinics with different numbers of visits. The

bunching parameter of interest for each clinic, c is:

bc =
N observed patients - N patients in counterfactual

N patients in counterfactual

Each term is measured in the bin containing the diagnostic threshold (140 mmHg). A clinic with

bc =−0.4, for example, has 40% of the expected mass at the threshold is missing. Standard errors

are obtained by bootstrapping the bunching estimation 100 times per clinic. [Figure 2 here]

4.3 Identifying Assumptions for the Bunching Approach

To recover a valid counterfactual for bunching estimation three assumptions must be met [Blomquist

et al., 2017]. First, the counterfactual distribution must be bounded and well-behaved. Because

blood pressure is a biological measurement this assumption is easily satisfied (see figure A2 for

the expected distribution of blood pressure).

polynomial is used, which results in excessive smoothing and is not recommended. I also specify

that the policy threshold is the minimum of its bin, because the diagnostic threshold is blood

pressure≥ 140.
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The second assumption is that missing mass is not caused by selection. It is recommended

that blood pressure is measured at every primary care visit making selection into testing unlikely.

Blood pressure is measured along with vital signs (e.g. pulse, temperature) as a general marker of

patient health, and because hypertension lacks symptoms screening is crucial. This fact is reflected

in the electronic health records data, where before any restrictions, 97.6% of visits contain a blood

pressure measurement (table A1).

Third, manipulation is one-sided and bounded, that is, providers are only rounding blood pres-

sure from above to below the threshold and only for individuals in some range of blood pressure.

Because hypertension status is only determined by one threshold, there is no reason for providers

to systematically round blood pressure when far from the threshold, providing support for the

boundedness assumption.

Here, the direction of rounding is unobservable at the patient-level, however, previous work and

the institutional setting provide support for one-sided manipulation. Researchers have compared

mean blood pressure in clinics with high left-digit bias (where noisy measurement and thus round-

ing are more likely) to clinics with low left-digit bias and concluded that blood pressure, if rounded

or measured imprecisely, is systematically rounded down [Greiver et al., 2019]. In addition, it is

well established that blood pressure is on average higher when measured in clinic compared to

at the patient’s home [Muntner et al., 2019]. Chile’s clinical practice guidelines for hypertension

management lists errors that commonly lead to incorrect blood pressure measurement [MINSAL,

2010, 2017]. Of the 8 common errors listed, 7 lead to an overstatement of blood pressure, as large

as 20mmHg (see table A4 for more details).

The payment scheme in Chile also suggests rounding down. Healthcare providers have been

found to exhibit lower effort when paid a fixed salary compared to other payment models such as

fee for service or performance based financing [Das et al., 2016]. Thus, in a salaried setting like

Chile’s public health care system, providers may avoid diagnosing a marginal patient. While some

providers also receive performance bonuses the performance indicators do not include diagnosis

of hypertension.

15



For these reasons it is unlikely, but not impossible that providers manipulate blood pressure

upwards. If downwards manipulation was masking some upwards manipulation then this is another

reason that the behavioral response estimated here using bunching would be a lower bound on the

true magnitude of discretion at each primary care clinic.

4.4 Variable Construction

The goal of this analysis is to understand the impact of health care providers’ discretion on the

quality of hypertension diagnosis decisions. Due to large sample requirements, bunching, which is

our measure of discretion, must be measured at the clinic rather than provider level.

After measurement, the magnitude of bunching at the clinic level can be parameterized in

several ways. My preferred specification examines the intensive margin: I construct a continuous

variable equal to bc∗−1 if the clinic’s estimated magnitude of bunching was statistically significant

at the 5% level, zero otherwise. For easier interpretation, this variable is then normalized across

clinics to mean zero, standard deviation one. In robustness checks, I construct four other vari-

ables that measure discretion and all lead to similar results (see appendix section A.9 for details).

While the second-stage standard errors in my main specification do not account for uncertainty in

the estimated bunching magnitudes, the results in Tables A10–A12, which use the FDR-adjusted

bunching variable and therefore do not depend on the bunching standard errors, are qualitatively

similar.

I study four groups of outcome variables: clinical decisions, hospitalizations, patient charac-

teristics, and placebo outcomes. Clinical decisions include the diagnosis of hypertension and the

prescription of anti-hypertensive medication. Hypertension diagnosis appears as a column in the

EHR data, and is an indicator equal to 1 for a new diagnosis, 0 otherwise. Prescriptions are re-

trieved from the national medications database and linked to the EHR by patient ID and date. I

construct a variable equal to 1 if a new prescription for anti-hypertension medication was written

on the same date as the patient’s primary care visit. Importantly, patients do not need to fill the

prescription for it to appear in the medications database.
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The main health outcomes of interest are hospitalization for stroke, heart attack, or congestive

heart failure as these are directly affected by untreated high blood pressure. Because these are

measured 3, 6, or 12 months after patient’s hypertension screening visit, they are also a measure

of cardiovascular risk relative to the patient’s current primary care encounter. Placebo health out-

comes studied include clinical decisions, biomarkers such as weight and height, all hospitalizations

not related to hypertension, and type 2 diabetes management measured by hospitalization for re-

lated complications. Placebo hospitalizations exclude any hospitalization for stroke, heart attack,

or heart failure. The cause of hospitalization was identified with ICD-10 codes for primary and

secondary diagnosis (see table A5 for details). For each diagnosis grouping I then create indicators

for if the hospitalization occurred within 3, 6, or 12 months of the hypertension screening visit.

Last, I examine discretion and patient characteristics. I focus on characteristics both observable

to the provider and potentially informative of cardiovascular risk: male patient, severe obesity (as

measured by body mass index ≥ 35), and age greater than or equal to 55 and 65 years.

4.5 Measuring the Impact of Discretion

To understand how clinical discretion is associated with main and placebo outcomes I use a simple

difference-in-differences style framework: I compare outcomes in higher vs. lower discretion

clinics and below vs. above the clinical threshold. The coefficient of interest is β3 in the following

regression:

Yi,c =α+β1Discretionc+β21(BP< 140i)+β3(Discretionc∗1(BP< 140i))+Xi+γi+λi+εic

(2)

Where Discretionc is the normalized excess mass in clinic c, 1(BP < 140i) is an indicator for if

patient i’s recorded systolic blood pressure is less than 140 mmHg, 0 otherwise. Xi is a vector

of patient characteristics. My preferred specification includes fixed effects for calendar year (γi),

and quarter (λi) of the primary care encounter in all regressions. Regressions for hospitalization

outcomes additionally include fixed effects for male and for age in 1 year increments. Standard
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errors are robust and clustered at the clinic level. All results are robust to the inclusion of no

controls, or month indicators, an indicator for if the last digit of recorded systolic blood pressure

was zero, or indicators for type of clinic.

This approach takes advantage of the fact that the public healthcare system in Chile does not

act as a competitive market. Instead, individuals are assigned to a primary care clinic based on

their address of residence. The national insurer, FONASA, keeps a list of all enrollees and their

assigned clinic. Because the public health care system does not act as a competitive market, clinics

have no explicit incentive to enroll more patients. Therefore, patients are exposed to varying levels

of discretion.

Figure 3 provides a test of the assumption that the magnitude of clinics’ discretion is uncorre-

lated with patient, clinic, and municipality characteristics by regressing each characteristic sepa-

rately on the continuous discretion variable. We see that these characteristics are not significantly

predictive of the magnitude of discretion, and that more discretion does not appear to be systemat-

ically related to patient health or risk. [Figure 3 here]

This approach has some limitations: I must rely on the usual difference-in-differences parallel

trends assumption, which here implies that changes in outcomes over systolic blood pressure values

are parallel between higher and lower discretion clinics. With a continuous treatment variable

(such as discretion), Callaway et al. [2024] show that the standard parallel trends assumption is not

enough to rule out the possibility of selection bias. Still, in figure A5, I show that mean unadjusted

outcomes in 10-unit bins of systolic blood pressure are roughly parallel between high and low

bunching clinics for the ranges where we do not expect outcomes to be affected by discretion

(90-120 and 160-200). Means within blood pressure bins for rare outcomes like cardiovascular

hospitalizations are somewhat noisy, and due to small cells it is not possible to adjust for key

covariates like sex and age here, but these figures help rule out the possibility of very different

trends at all levels of blood pressure causing the results I find. At the high end of systolic blood

pressure, rates of stroke appear to differ between high and low bunching clinics, but I show in

tables A13 -A18 that results are robust to excluding these patients, though power is reduced.
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5 Results

5.1 Evidence of Discretion in Blood Pressure Measurement

We begin by examining the magnitude and variation of bunching, the measure of health care

providers’ propensity to use their discretion in making clinical decisions for hypertension. Fig-

ure 1 panel C demonstrates that for some clinics there is clear bunching just below the diagnostic

threshold (e.g. clinic B, where blood pressure=139 is highly over-represented), while for other

clinics there is little to no bunching (e.g. clinic D).

I quantify the amount of discretion separately for each clinic using equation (1). Among the

257 clinics I study, negative bunching is observed in 140 clinics, and is statistically significant at

the 5% level in 24 of those. Negative bunching indicates missing mass at and just above the thresh-

old, suggesting that providers record a lower blood pressure value than they measured. Positive

bunching is observed in the remaining 117 clinics, but is statistically significant in only 2. I do not

focus on positive bunching because in these two clinics I observe excess mass in the 140-144 bin,

and missing mass to the right of that. Because all blood pressure readings at or above 140 indi-

cate the same clinical action, that is, to diagnose hypertension, bunching at 140 is not as clinically

meaningful and likely reflects rounding instead of discretion in clinical decision-making. [Figure

4 here]

Figure 4 displays the distribution of the magnitude of discretion at the clinic level among clinics

with statistically significant negative bunching. The median clinic has a b value of -0.215, with

values ranging from -0.06 to -0.622. This means at clinics with blood pressure bunching, 6% to

62.2% of patients who are predicted to have blood pressure at or just above 140 mmHg - and who

therefore are eligible for hypertension diagnosis - are instead recorded as having blood pressure

under the diagnostic threshold. These results suggest a substantial behavioral response to the

diagnostic threshold for hypertension at some primary care clinics, and no behavioral response at

others.

The observed pattern of bunching is a combination of several possible behaviors. In the sim-
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plest case, the provider measures blood pressure ≥140 but instead records a number under 140

in the EHR. Or, the provider may have taken multiple blood pressure measurements for the same

patient during the same visit, as suggested in the clinical guidelines. The ‘final’ blood pressure

measurement recorded in the EHR might be an average of multiple readings, or the provider may

retest to get to a single number they are satisfied with. Averaging at least two measurements is rec-

ommended in Chile’s clinical practice guidelines as a method of obtaining a more precise signal

of patients’ health [MINSAL, 2010, 2017]. Unfortunately, only the final decision is present in the

electronic health record. Still, in all outlined scenarios, providers are in theory faced with at least

one positive test result, and ultimately record a blood pressure reading below 140 for the patient,

indicating they have used their discretion to change the test result.

Importantly, we do not observe the same bunching or rounding behavior in other biomarkers

measured at the same encounters in primary care, such as LDL cholesterol and weight (Figure

A4). This suggests that the observed bunching in blood pressure measurement is associated with

hypertension diagnosis and is not a widespread phenomenon.

5.2 The Impact of Discretion on Clinical Decisions

Given providers’ behavioral response to the diagnostic threshold, we next examine the impact of

this behavior on clinical decisions. Table 2 displays the impact of discretion on the probability of a

new hypertension diagnosis or medication prescription. The coefficient of interest is the interaction

between the magnitude of clinics’ discretion and the indicator for blood pressure recorded below

the diagnostic threshold (Discretion x BP< 140). Importantly, if providers are perfectly following

clinical practice guidelines, there will be no diagnoses or prescriptions below systolic blood pres-

sure of 140. And, if providers are following guidelines similarly at high and low discretion clinics,

we expect to see a coefficient near zero on the interaction term between discretion and BP< 140.

Indeed, the coefficients on the interaction term for both diagnosis and prescription are each

close to zero and not statistically significant, indicating no impact of discretion. That is, providers

appear to adhere to clinical practice guidelines similarly at higher and lower discretion clinics. This
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suggests that the location of a patient’s recorded blood pressure (whether manipulated or not) with

respect to the threshold is meaningful, and likely reflects the provider’s belief about the patient’s

risk. [Table 2 here]

5.3 Discretion and Selection by Cardiovascular Risk

When a provider uses their discretion to reassign a positive hypertension test result as negative, they

are effectively considering the test a false positive. Untreated high blood pressure raises a patient’s

risk of adverse cardiac events. Thus, if providers are incorrectly reclassifying true positives as false

positives we would see a higher rate of hospitalization for cardiac events in the months following

the primary care visit in the group affected by discretion.

Instead, I find the opposite. Table 3 (row 1) displays a strong negative association between

discretion and the probability of stroke or heart attack per 100 patients. A one standard deviation

increase in discretion is associated with a lower probability of stroke hospitalization of 0.02 to

0.06 percentage points, measured within 3 to 12 months respectively (p-value< 0.05). A similar

pattern is seen for heart attack, where a one standard deviation increase in discretion is associated

with a probability of hospitalization that is 0.028 and 0.035 percentage points lower, within 3 or

12 months, respectively (p-value< 0.1). We observe no effect of discretion on the probability of

hospitalization with congestive heart failure. All models are adjusted for patient sex and age, in

addition to the controls in equation (1). Results are also robust to the inclusion of controls for type

2 diabetes, dyslipidemia, and reported family history of cardiovascular disease. [Table 3 here]

Importantly, these results do not indicate that discretion leads to an overall lower number of

cardiovascular hospitalizations. Instead, the reduction in the probability of hospitalization among

patients classified as hypertension negative at high discretion clinics (table 3, row 1) is offset by

an increase in the probability of hospitalization of a similar magnitude among patients classified

as hypertension positive at the same clinics (table 3, row 2). These results are unsurprising: as

providers at high discretion clinics reassign some low cardiovascular risk patients to the hyperten-

sion negative group, this leads to a higher concentration of high cardiovascular risk patients in the
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hypertension positive group at high discretion clinics (compared to low discretion clinics), shown

as positive coefficients in row 2 of table 3.

Figure A9 plots cardiovascular hospitalizations for stroke or heart attack within one year of

the primary care visit, separately by 10 and 20 unit systolic blood pressure bins, and separately

by clinics with or without statistically significant bunching at p< 0.05. Here, we see that the

probability of hospitalization is significantly different only in the blood pressure=150 bin (140-159

mmHg), which corresponds to where we see missing mass in the distribution of blood pressure at

high discretion clinics, providing further support that the difference in hospitalizations is due to

reassignment of patients on either side of the diagnostic threshold.

The regression results are additionally robust to narrowing the analysis window around the di-

agnostic threshold: for results conditioning on systolic blood pressure between 90 and 160 mmHg

see tables A13, A15, and A17 and between 120 and 160 mmHg see tables A14, A16, and A18.

These results suggest that at clinics where providers are more likely to use their discretion

when diagnosing hypertension higher risk patients are more likely to be classified as hypertension

positive, and lower risk patients are more likely to be classified as hypertension negative, but there

is no net change in the number of hospitalizations.

5.4 Discretion and Placebo Outcomes

The cardiovascular hospitalization results raise several questions, namely, how do providers dif-

ferentiate between true and false positive tests for hypertension? Is it that providers are sorting

overall healthier patients under the threshold, or do they have insight about cardiovascular risk?

Could providers at high discretion clinics simply providing an overall higher quality of care?

To answer these questions, I estimate the impact of discretion using equation 2 on several

placebo outcomes: clinical tests (whether the patient’s blood glucose, cholesterol, weight and

height were measured), biomarkers (patient height and weight), and new diagnoses (dyslipidemia

and type 2 diabetes) from the primary care encounter, as well as future hospitalizations. I focus on

two types of hospitalizations, each measured 3, 6, or 12 months after the primary care encounter:
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(1) non-cardiovascular related hospitalization (all hospitalizations excluding stroke, heart attack,

and heart failure), a measure of the overall health of patients and (2) the probability of hospitaliza-

tion for type 2 diabetes causes (excluding stroke, heart attack, and heart failure), among patients

who have been previously diagnosed with type 2 diabetes. While an indirect measure of quality

of care, if discretion is an indicator of overall clinical skill we would expect patients affected by

discretion to also have fewer hospitalizations for their non-hypertension related conditions.

Estimates of the impact of discretion on placebo outcomes are shown in figure 5. All coeffi-

cients are precisely estimated null effects, suggesting no relationship between the impact of clinical

discretion and these outcomes. The null effects on non-cardiovascular hospitalizations addition-

ally suggest that discretion does not simply lead to overall healthier patients being sorted under the

threshold. Similarly, the null effects on diabetes-related hospitalizations, estimated among patients

previously diagnosed with diabetes, suggest that providers at high discretion clinics are not more

effective at managing diseases other than hypertension, and help to rule out unobservable effects

of clinic quality that might relate to discretion. [Figure 5 here]

To definitively conclude that discretion leads to a more accurate sorting of patients on either

side of the diagnostic threshold in terms of health I would ideally measure effects on patient mortal-

ity, however, mortality is unobserved in the analysis dataset. In appendix section A.11 I re-estimate

the effect of discretion on cardiovascular hospitalizations among patients who are known to be alive

for at least 3, 6, or 12 months after their initial primary care visit. Intuitively, among patients who

are alive, hospitalization for stroke or heart attack is one of the most severe outcomes. Table A22

shows similar impacts of discretion on cardiovascular hospitalizations in this sample.

5.5 Discretion and Selection by Patient Characteristics

So far we have seen that providers at high and low discretion clinics are equally likely to follow

guidelines for hypertension diagnosis and treatment, and yet, patients with lower cardiovascular

risk are more likely to be correctly classified as hypertension negative at high discretion clinics.

These two facts can both be true if providers use their discretion to identify false positives and sort
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these patients below the threshold.

How could providers distinguish between true and false positives given noisy blood pressure

readings? When deciding if a patient belongs in the group of false positives providers may, in-

stead of calculating conditional probabilities which is mentally taxing, judge the similarity of the

patient to someone who is representative of low cardiovascular risk, i.e. use the representative-

ness heuristic [Tversky and Kahneman, 1974]. To test for this, I use equation 2 to understand if

key patient characteristics are over-represented below the diagnostic threshold at high discretion

clinics. Specifically, I examine characteristics that are 1) easily observed by the provider during

the patient’s visit where hypertension screening occurred, and 2) that would be present in a patient

representative high cardiovascular risk. These are male sex, severe obesity, age 55 and older, and

age 65 and older.

Table 4 examines the impact of discretion on patient characteristics correlated with cardiovas-

cular risk, interpreted as selection with respect to the threshold. At higher discretion clinics, males

are 1.6% less likely to be classified as hypertension negative, as are older patients at a magnitude

of 1.0% if the threshold of 55 is used, and 1.5% if 65 is used. [Table 4 here]

Consequently, we would expect less bunching in the blood pressure distributions of these ob-

servably high-risk groups. To test this, I estimate the magnitude of bunching for male vs. female

patients at clinics with statistically significant bunching, as well as for patients aged 55 and older

vs. younger than 55, and those aged 65 and older vs. younger than 65. Figure 6 shows that while

there is bunching of blood pressure in all groups, the magnitude is smaller among higher-risk

groups (males, over 55 and over 65), reinforcing the idea that providers rely on heuristics. How-

ever, these differences are not large and the within-group difference is only statistically significant

comparing patients under 65 to 65 and older. [Figure 6 here]

The age thresholds of 55 and 65 are likely to be salient to providers as these two thresholds

appear frequently in Chile’s guidelines for managing other cardiovascular diseases [MINSAL,

2017]. I do not find similar results when ages 50, 60, and 70 are used (table A23). Other than

for identifying groups with different treatment thresholds (<18 and ≥80), age is not explicitly
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included in the clinical practice guidelines for diagnosing hypertension.

These results are consistent with providers using the representative heuristic to differentiate be-

tween a true and false positive test for hypertension. However because of the small point estimates,

heuristic thinking is likely only part of the provider’s decision-making process. As an extension I

also investigate the of role private information (section A.13). I find that blood pressure together

with patient characteristics associated with high cardiovascular risk explain less than 1% of the

variation in future adverse health outcomes, suggesting that providers who are able to make accu-

rate predictions about risk are likely using information that is not available in the EHR, and also

not in the guidelines.

5.6 Discretion and Subsequent Visits

The bunching analysis uses an index visit: the first visit a patient is observed where they could

be diagnosed. Here, I revisit the longitudinal dataset to understand what happens to patients after

they are not diagnosed with hypertension during their index visit. Comparing clinical actions at

patients’ subsequent visits, I find that 5.5% of patients at low discretion clinics are eventually

diagnosed with hypertension, compared to 7.3% at high discretion clinics (Table A27). Many of

these patients are diagnosed at their next visit: 47% at high discretion clinics and 50% at low

discretion clinics. Last, at low discretion clinics 28.9% of patients are never diagnosed while I

observe them in the data, compared to 31.8% at high discretion clinics.

It should be noted that this sample is selected – at high discretion clinics there are more near-

positive, undiagnosed patients remaining in the sample. Also, we can only observe subsequent

clinical actions for patients who return to a preventative care appointment, a behavior that depends

on many factors potentially related to clinical discretion or hypertension risk, so these results are

likely biased. Still, the fact a similar share of patients are diagnosed at their next visit reinforces

the finding that providers at high discretion clinics were not incorrectly labeling patients as false

positives in the short run. In the longer run, we see that more patients at high discretion clinics go

on to be diagnosed, possibly reflecting an appropriate delay in diagnosis.

25



6 Conclusion

This paper documents health care providers’ behavioral response to the diagnostic threshold for

hypertension. This behavior varies across primary care clinics in Chile, where 6 to 62% of pa-

tients’ blood pressure measurements estimated to be just above the diagnostic threshold are instead

located just below it. These findings suggest providers selectively round some patients’ blood pres-

sure down or selectively remeasure blood pressure, turning a positive test result into a negative.

I estimate the impact of discretion on clinical decisions and hospitalizations using a double

differences approach. Comparing higher and lower discretion clinics reveals that providers adhere

to clinical practice guidelines similarly. Yet, patients at high discretion clinics who are recorded as

having a negative test are less likely to be hospitalized with adverse cardiovascular events in the

future – the highest risks from uncontrolled high blood pressure. Together these results suggest the

providers at high discretion clinics are correctly interpreting some patients’ tests results as false

positives, which may result in more cost-effective care through avoiding unnecessary diagnoses,

or delaying diagnosis and treatment.

The estimated difference in the rate of adverse health outcomes is potentially driven by two

mechanisms. Most importantly, at high discretion clinics, false positives are more likely to be

correctly labeled as a negative test result. Given no change in the levels of hospitalization, this

leaves more true positives above the threshold. Notably, correctly classifying patients in this way

would lead to the large negative effects seen, whether the overall level of hospitalization at high

discretion clinics changed or not.

Second, because over-treatment with prescription drugs can be harmful, not treating false pos-

itive patients could also have direct benefits. Recent work has shown there can be harms to over-

prescribing: in the United States 12 in 1000 people aged 65 and up were hospitalized for medi-

cation harms, and this was largely driven by therapeutic medicines for chronic diseases [Budnitz

et al., 2021]. For this reason, and because patients are more likely to adhere to simpler treatment

regimes, policymakers have recently turned to treatment simplification and de-prescribing as one

method to improve health, especially for cardiovascular diseases [Vrijens et al., 2017].
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I also provide evidence suggesting that providers use heuristics to distinguish between true and

false positive test results. Males and older patients are less likely to be affected by discretion, and

I observe less bunching in their blood pressure distributions.

This paper has several limitations, including the necessity of measuring discretion at the clinic

level instead of the provider level. This is done for two reasons: because of the large data require-

ments for bunching estimation, and because patients are assigned to a public, primary care clinic

based on their address, but they are not assigned to a specific provider, causing concerns about se-

lection to providers but not selection into clinics. Still, by aggregating to the clinic level important

unobserved heterogeneity in the use of discretion or in clinical skill across providers and within

clinic might be masked. However, there are several reasons providers working at the same clinic

may behave similarly, such as access to the same technologies within a clinic. Prior work has ad-

ditionally documented that among physicians, peers’ and co-workers’ practice style is influenced

by others in their immediate network (e.g. Agha and Zeltzer [2019]). Additionally, geographic

variations in provider preferences and practice style are well documented [Baicker et al., 2004,

Finkelstein et al., 2016]. As such, the measure of discretion here is a combination of clinical skill

and practice style at each primary care clinic.

Other limitations include the existence of only the ‘reported’ blood pressure measurement and

not all measurements taken at the encounter, if there were multiple, or information about the

provider’s thinking, resulting in a somewhat of a black box of clinical decision-making. Also, I do

not observe patient mortality, which may be a more objective measure of health than cardiovascular-

related hospitalizations. However, because care is low or zero cost in the Chilean setting, concerns

about access to care should be limited. Similarly, while hospitalization results suggest providers’

discretion is applied to false positive patients, I do not estimate the returns to hypertension treat-

ment for marginally undiagnosed patients or an optimal treatment threshold, making it difficult to

determine whether discretion improves or worsens patient outcomes in the long term.

The question of the extent to which providers should adhere to clinical practice guidelines

has significant implications for health policy. Recent efforts have focused on realigning physician

27



incentives to prioritize adherence to guidelines and improve patient health outcomes, aiming to

move away from incentivizing the quantity of care provided [CMS, 2016]. However, this paper

highlights a clinical scenario where non-adherence to guidelines can be advantageous for patients

in certain situations. The quality of guidelines, and the tools or biomarkers used to measure patient

health, are important to consider in such payment policy.

Many medical decisions exist within ‘grey areas’ characterized by high levels of uncertainty.

This uncertainty often arises due to the necessity of making decisions with limited information

about patient health. For example, the decision to prescribe antibiotics is usually made before test

results return from the lab, and costly test decisions, such as testing for heart attacks, rely heavily

on subjective information provided by the patient. In both of these cases, research has shown

that prediction algorithms could improve the quality of clinical decisions [Huang and Ullrich,

2021, Mullainathan and Obermeyer, 2021]. A noisy biomarker or too-simple clinical practice

guidelines also create uncertainty. My findings suggest that healthcare providers pull from the rich

set of information that may not be included in clinical guidelines or the electronic medical record

when making decisions. As decision support tools, including algorithms and payment models

that prioritize guidelines adherence become increasingly prevalent in medicine, it is crucial to

understand the quality of guidelines and study the nuances of whether provider deviations from

guidelines ultimately benefit or harm patients.
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8 Tables and Figures

Figure 1: Expected vs. Observed Distribution of Systolic Blood Pressure

Panel A: National Health Survey Panel B: Primary Care Records, Overall
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Panel C: Primary Care Records, Six Clinics
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Note: Comparison of expected (panel A) to observed (panel B) distribution of systolic blood

pressure in two large populations. Panel A shows the distribution of systolic blood pressure

from Chile’s nationally representative health survey (ENS 2016-2017). Panel B shows the

distribution of systolic blood pressure from primary care electronic health records where sub-

stantial end-digit bias, or rounding to zero, is seen. Panel C shows the distributions of systolic

blood pressure from 6/257 primary care clinics from preventative care visits among patients

who were not previously diagnosed with hypertension. Clinics A, C, and E show substantial

left-digit bias: numbers that end in zero are over-represented. Clinics A, B, and F show sub-

stantial bunching: there is missing mass above 140 and excess mass below it.
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Figure 2: Example of Counterfactual Bunching Estimation

Panel A: Clinic with Little Rounding Panel B: Clinic with Substantial Rounding
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Note: Examples of bunching estimation. The grey line is the counterfactual density from

equation (1). Panel A shows a clinic with little rounding to zero. Panel B shows a clinic with

more rounding to zero, seen as spikes at 110, 120, 130,..., 150. The dashed line at 140 shows

the diagnostic threshold. Estimated using the bunching package in R [Mavrokonstantis, 2019].
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Figure 3: Balance of Patient and Clinic Characteristics by Magnitude of Discretion
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Note: This figure tests for correlation between patient, clinic, and municipality characteristics

and the magnitude of discretion. Point estimates and 95% confidence intervals shown from the

regression of clinics’ continuous and standardized bunching magnitude on (A) patient charac-

teristics, and (B) clinic and municipality characteristics. Each characteristic is from a separate

regression and includes year and quarter fixed effects, with standard errors clustered at the

clinic level.
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Figure 4: Estimated Magnitude of Discretion in Blood Pressure Measurement
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Note: Histogram of the magnitude of discretion, estimated using bunching, for clinics with sta-

tistically significant negative bunching (24/257). Negative values indicate missing mass above

the threshold, and excess mass below it. Each clinic’s excess mass estimate was normalized by

dividing the total excess mass by the height of the counterfactual at the threshold.
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Table 1: Summary Statistics

Patient Characteristics Mean St. Dev.

Female 0.618 0.486
Mean age 57.711 13.087
Age 18-29 0.031 0.173
Age 30-39 0.069 0.253
Age 40-49 0.172 0.377
Age 50-59 0.263 0.440
Age 60-69 0.264 0.441
Age 70-79 0.201 0.401
Body mass index 30.714 6.013
Normal or underweight BMI 0.211 0.408
Overweight BMI 0.375 0.484
Obese BMI 0.482 0.500
Severely obese BMI 0.067 0.251
Type 2 Diabetes 0.286 0.452
Dyslipidemia 0.641 0.480
High cholesterol 0.351 0.477
Cardiovascular risk: high 0.271 0.445
Cardiovascular risk: moderate 0.168 0.374
Cardiovascular risk: low 0.129 0.335
Sedentary 0.557 0.497
Monthly income: below poverty line 0.267 0.442
Monthly income <$320 or pensioner 0.435 0.496
Monthly income $320-465 0.122 0.327
Monthly income >$465 0.171 0.376

Municipality & Clinic Characteristics Mean St. Dev.

Household income per capita 440.827 229.015
Log visits per clinic 7.938 0.460
Mean municipality age 36.521 2.343
Secondary or primary education 0.865 0.088
% of municipality that is rural 0.148 0.173
Tertiary education 0.135 0.088
Urban primary care clinic 0.825 0.381
Rural primary care clinic 0.089 0.286
Low complexity hospital 0.058 0.235
Literacy rate in municipality 0.966 0.024
Employment rate in municipality 0.525 0.056

Note: Panel A: Mean and standard deviation (St. Dev.) of patient-level characteristics for

619,907 patients. BMI stands for body mass index. Cardiovascular risk is assigned by the
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healthcare provider using a modified Framingham 10-year cardiovascular risk algorithm. Monthly

income categories come from the patient’s FONASA insurance level. All variables are indi-

cators except for age and body mass index. Panel B: Mean and standard deviation of clinic-

and municipality-level characteristics for 257 clinics. Municipality-level variables come from

Chile’s Socio-economic Survey, and are linked to clinics based on their location. Household

income per capita is monthly a municipality mean, and in 2020 USD.
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Table 2: Impact of Discretion on Hypertension Diagnosis and Prescription

Hypertension
Diagnosis

Hypertension
Prescription

(1) (2)

Discretion x BP<140 −0.006 0.008
(0.006) (0.010)

Discretion −0.009 −0.021
(0.006) (0.014)

BP<140 −0.251∗∗∗ −0.169∗∗∗

(0.005) (0.005)

Observations 619,907 619,907
Mean dep. var. 0.522 0.376
Clinics 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results esti-

mated using equation (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP)

was below 140. Discretion is a continuous variable for the estimated magnitude of bunching

at the clinic, normalized to mean 0, standard deviation 1. The coefficient of interest is the

interaction term, which is interpreted as the impact of discretionary clinical decision-making.

Robust standard errors clustered at the primary care clinic level are in parentheses. All models

include fixed effects for year and quarter of primary care visit. Hypertension diagnosis is an

indicator for if the patient was newly diagnosed. Hypertension prescription is an indicator for

if the patient was prescribed a new hypertension medication.
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Table 3: Impact of Discretion on Cardiovascular Hospitalization 3, 6, and 12 Months After Primary Care Visit

Stroke Heart Attack Congestive Heart Failure

≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Discretion x BP<140 −0.018∗∗ −0.039∗∗∗ −0.061∗∗∗ −0.028∗∗ −0.040∗∗∗ −0.035∗ 0.003 0.002 −0.0003
(0.009) (0.012) (0.019) (0.012) (0.013) (0.019) (0.006) (0.010) (0.013)

Discretion 0.018∗∗ 0.039∗∗∗ 0.059∗∗∗ 0.022∗ 0.033∗∗ 0.029 −0.005 −0.009 −0.012
(0.009) (0.012) (0.017) (0.012) (0.014) (0.020) (0.005) (0.008) (0.010)

BP<140 −0.029∗∗∗ −0.061∗∗∗ −0.107∗∗∗ −0.025∗∗∗ −0.062∗∗∗ −0.119∗∗∗ 0.010 0.013 0.004
(0.005) (0.009) (0.014) (0.009) (0.013) (0.019) (0.007) (0.010) (0.015)

Observations 619,907 619,907 619,907 619,907 619,907 619,907 619,907 619,907 619,907
Mean dep. var.(%) 0.029 0.066 0.137 0.109 0.205 0.385 0.062 0.124 0.232
Clinics 257 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equation (2). BP< 140

is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a continuous variable for the estimated

magnitude of bunching at the clinic, normalized to mean 0, standard deviation 1. The coefficient of interest is the interaction term,

which is interpreted as the impact of discretionary clinical decision-making. All dependent variables in this table are multiplied by

100. Each dependent variable is an indicator for if the patient was hospitalized with the listed condition, within 3, 6 or 12 months

of their primary care visit, zero otherwise. Robust standard errors clustered at the primary care clinic level are in parentheses. All

models include fixed effects for male, 1-year age, year and quarter of primary care visit. Stroke includes any cerebral infarction

(ICD-10 codes I63). Heart attack includes acute coronary syndrome, myocardial infarction, and any other condition associated with

sudden, reduced blood flow to the heart (I20-22, I24-25). Congestive heart failure is I50.
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Figure 5: Impact of Discretion on Placebo Outcomes
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Note: This figure presents difference-in-differences results estimated using equation (2). β3,

the coefficient on the interaction term between discretion and BP<140 is plotted, along with

95% confidence intervals. Outcomes other than height and weight are indicators. The asterisk

indicates the outcome is defined only among patients with a prior type 2 diabetes diagnosis

(177,083 observations). Corresponding tables: A8, A9.
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Table 4: Selection by Patient Characteristics Representative of High Cardiovascular Risk

Male
Severe
Obesity Age 55+ Age 65+

(1) (2) (3) (4)

Discretion x BP<140 −0.006∗∗∗ 0.001 −0.006∗∗ −0.005∗∗∗

(0.002) (0.002) (0.002) (0.002)

Discretion 0.008∗∗∗ −0.0002 −0.006 −0.008
(0.002) (0.004) (0.005) (0.005)

BP<140 −0.096∗∗∗ −0.019∗∗∗ −0.141∗∗∗ −0.127∗∗∗

(0.002) (0.001) (0.004) (0.003)

Observations 619,907 582,880 619,907 619,907
Mean dep. var. 0.382 0.067 0.596 0.336
Clinics 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results esti-

mated using equation (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP)

was below 140. Discretion is a continuous variable for the estimated magnitude of bunching at

the clinic, normalized to mean 0, standard deviation 1. The coefficient of interest is the inter-

action term, which is interpreted as the impact of discretionary clinical decision-making. Each

dependent variable is an indicator for if the patient has the characteristic listed, zero otherwise.

Robust standard errors clustered at the primary care clinic level are in parentheses. All models

include fixed effects for year and quarter of primary care visit.
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Figure 6: Estimated Magnitude of Discretion in Blood Pressure Measurement by Patient Charac-
teristics
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Note: This figure presents the magnitude of discretion (bunching) in blood pressure among

high discretion clinics, defined as clinics with an overall magnitude of discretion > 0 at p <

0.05. Normalized excess mass was obtained by conditioning on patient characteristic (age,

sex), and conducting bunching estimation on the distribution of systolic blood pressure using

equation (1). Bunching is more pronounced among patients with higher cardiovascular risk

factors (male, age ≥55, age ≥65) than among those with lower cardiovascular risk (female,

age <55, age <65). However, within-group differences are statistically significant only for age

65 (p<0.05).
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A.1 Sample Selection

Table A1: Inclusion Criteria for Primary Care Electronic Health Records Data

Inclusion criteria N patients N clinics % patients
excluded

- 1,448,800 552 -
Blood pressure was measured 1,413,499 545 2.4%
No previous hypertension diagnosis
or medication prescription

955,528 539 32.4%

Age 18-79 863,571 538 9.6%
Large clinics 755,653 257 12.5%
At least one year of follow-up time 619,907 257 18.0%

Note: Inclusion criteria and number and percent of patients excluded at each step. Large is defined a clinic above
the median number of patient-visits (N=1265). The final sample is 619,907 patient-visits and 257 clinics.

Table A2: Patient Reasons for Admission to Cardiovascular Health Program

N %

History of CVD 393,657 63.5
Dyslipidemia 285,304 46.0
Type 2 diabetes 177,083 28.6
Smoker and over 55 9,643 1.6
Unknown 52 0.0

Unique patients 619,907

Note: Patients are enrolled in Chile’s Cardiovascular Health Program (Programa Salud Cardiovascular) if they
have one or more of the characteristics in the table, or hypertension. Categories are not mutually exclusive.
Patients in the Cardiovascular Program with previously diagnosed hypertension were excluded.
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A.1.1 PSCV vs. non PSCV patients

Only EHR data from PSCV eligible patients is available. Could missing mass in the distribution
of blood pressure be caused by non-PSCV patients? First, PSCV patients are defined as having
high cardiovascular risk, and therefore are likely to have higher blood pressure than non-PSCV
patients. Excluding non-PSCV patients is therefore unlikely to cause missing mass in the regions
I observe: approximately 140-150 mmHg. While I cannot check whether this is true using my
primary dataset, I can check it using Chile’s National Health Survey (ENS).

To do this, I classified ENS participants into PSCV eligible or PSCV non-eligible. Patients
are eligible for PSCV if they have type 2 diabetes, dyslipidemia, or have risk factors: a history of
cardiovascular disease (CVD), or smoke and are at least 55 years old [MINSAL, 2017]. While prior
diagnosis with hypertension is an inclusion criteria for PSCV, these patients were excluded from
both my paper’s analysis and from the ENS sample. The ENS does not ask about every disease
that is considered in a patient’s history of cardiovascular disease by the PSCV program4 but I
believe this is still a useful comparison. Figure A1 shows that among PSCV eligible patients, the
distribution of systolic blood pressure is shifted right compared to non-eligible patients, suggesting
that missing mass above 140 mmHg is unlikely to be caused by using only PSCV patients in my
analysis.

Figure A1: Blood pressure among PSCV-eligible vs. non-eligible patients in the National Health
Survey
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Note: Distribution of systolic blood pressure from Chile’s National Health Survey (ENS),
comparing patients eligible for the PSCV program vs. not.

4History of CVD defined by the PSCV program includes patient self report of: Coronary heart disease: Acute
myocardial infarction, stable/unstable angina, history of angioplasty or myocardial revascularization surgery; Cere-
brovascular disease: Stroke or transient ischemic stroke; Peripheral arterial disease; Atherosclerotic aortic disease;
Renovascular disease; Carotid disease. The National Health Survey only asked participants about their history of
Coronary heart disease and Cerebrovascular disease.
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Table A3: Comparing Mean Patient Characteristics Between Included and Excluded Clinics

Variable
Excluded

Clinics
Included
Clinics Mean Diff. p-val

Male 0.39 0.39 -0.01 0.08
Age 57.18 57.31 0.14 0.66
Type 2 Diabetes 0.21 0.28 0.08 0.00
BMI: Normal 0.12 0.14 0.02 0.00
BMI: Overweight 0.35 0.37 0.02 0.00
BMI: Obese 0.52 0.49 -0.03 0.00
Waist: Obese 0.70 0.69 -0.00 0.76
Cholesterol: normal 0.66 0.65 -0.01 0.08
Cholesterol: high level 1 0.21 0.21 0.00 0.74
Cholesterol: high level 2 0.09 0.10 0.01 0.06
Cholesterol: high level 3 0.04 0.04 0.00 0.04
Sedentary 0.53 0.55 0.02 0.07
Fonasa A 0.33 0.27 -0.05 0.00
Fonasa B 0.41 0.43 0.02 0.04
Fonasa C 0.11 0.12 0.01 0.00
Fonasa D 0.14 0.17 0.02 0.00
Municipality mean log income 5.90 6.02 0.12 0.00
Municipality mean age 36.97 36.52 -0.45 0.06
Municipality share secondary edu. or less 0.90 0.86 -0.03 0.00
Municipality share tertiary edu. or more 0.10 0.14 0.03 0.00
Municipality share rural 0.28 0.15 -0.13 0.00
Log visits at clinic 5.85 7.94 2.09 0.00
Urban clinic 0.47 0.82 0.35 0.00
Rural clinic 0.14 0.09 -0.05 0.06
Low complexity hospital 0.09 0.06 -0.03 0.17
N Clinics 239.00 257.00

Note: This table compares mean patient characteristics between patients age 18-79 and followed for at least one
year at large clinics (final analysis sample of 619,907 patients at 257 clinics), to patients age 18-79 and followed
for at least one year at small clinics. Large clinics had at least 1265 visits (median). Note that this table averages
within clinics, whereas table 1 is at the patient level.
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A.2 Additional Institutional Details

Table A4: Chile’s Cardiovascular Management Handbook: Frequent errors that result in an inac-
curate measurement of blood pressure

Discrepancy in Blood Pressure
Factor Systolic Diastolic

Did not rest 5 minutes prior to measurement +10-20 0
Talking or active listening during measurement + 10-17 + 10-13
Blood pressure cuff over clothing +5-40 0
Blood pressure cuff too tight +10-15 +2-8
Blood pressure cuff too loose -7 5
Ate, smoked, or drank coffee 30 minutes before measurement +6-20 0
Back was not against the chair +6-10 0
Crossed legs +5-8 0

Note: This table is the author’s own translation of appendix table 3 from Chile’s 2017 handbook on cardiovascular
disease management (Orientación Técnica Programa de Salud Cardiovascular 2017, page 37, MINSAL [2017]).
Discrepancy indicates the change in blood pressure relative to the patient’s theoretical ‘true’ blood pressure.
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A.3 Diastolic Blood Pressure

Figure A2: Expected vs. Observed Distribution of Diastolic Blood Pressure
Panel A: Chile’s Nationally Representative Health Survey. Panel B: Primary Care Records
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Note: Comparison of expected (panel A) to observed (panel B) distribution of diastolic blood pressure in two large
populations. Panel A shows the distribution of diastolic blood pressure from Chile’s nationally representative
health survey (ENS 2016-2017). Panel B shows the distribution of diastolic blood pressure from primary care
electronic health records. Individuals with a previous diagnosis of hypertension were excluded.
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A.4 Construction of Variables

Table A5: Construction of Hospitalization Variables

Variable Description ICD-10 codes
Stroke Any cerebral infarction I63

Heart attack

Also called acute coronary
syndrome. Includes myocardial
infarction, and other range of
conditions associated with sudden,
reduced blood flow to the heart

I20, I21, I22, I24, I25

Congestive heart failure Failure of the heart of pump or
fill adequately I50

Non-cardiovascular
Hospitalization for any
reason except stroke, heart
attack, and heart failure

Any except I20, I21,
I22, I24, I25, I50, I63

Type 2 Diabetes
Hospitalization for reasons
directly related to
type 2 diabetes

E10, E11, I12, N03,
N04, N08, N18, Z79,
Z99

Note: This table describes how hospitalization variables were constructed. Each variable is an indicator equal to
one if the patient was hospitalized with a primary or secondary diagnosis listed in the ICD-10 column.
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A.5 Robustness: Bunching Estimation

Table A6: Robustness of bunching estimation to different specifications: clinics with low share of
excess zeros (little end digit bias)

Specifications Preferred (1) (2) (3) (4) (5) (6) (7)

N clinics 43 21 81 43 43 43 43 43

Low rounding classified as
clinics with excess zeros <10% <5% <20% <10% <10% <10% <10% <10%

Exclusion window (left of threshold) 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins

Exclusion window (right of threshold) 0 bins 0 bins 0 bins 1 bin 0 bins 0 bins 0 bins 0 bins

Bin size 5 5 5 5 4 2 5 5

N bins left (100-139; sums to 40) 8 8 8 8 10 20 8 8

N bins right (140-180; sums to 40) 8 8 8 8 10 20 8 8

Polynomial 9 9 9 9 9 9 7 10

Results

N clinics with negative bunching 43 17 59 35 28 25 30 31

N clinics with statistically significant
negative bunching (p<0.05) 18 10 25 17 8 5 12 18

Magnitude of bunching among clinics with significant bunching (p<0.05)

Mean -0.19 -0.20 -0.19 -0.43 -0.29 -0.38 -0.23 -0.21

Median -0.17 -0.19 -0.17 -0.45 -0.26 -0.32 -0.22 -0.18

Minimum -0.38 -0.38 -0.38 -0.72 -0.53 -0.73 -0.39 -0.39

Maximum -0.06 -0.06 -0.06 -0.21 -0.12 -0.23 -0.12 -0.10

Note: Table reports estimates of the magnitude of bunching under alternative specifications (columns). First,
clinics are classified into “high rounders" or “low rounders" depending on the share of excess zeros observed in
their distributions (5-20%), and this table includes low rounding clinics only. Polynomial refers to the numeric
value for the order of polynomial for counterfactual fit. All specifications are estimated on systolic blood pressures
100-180 with 40 units on either side of the threshold (140). All specifications include fixed effects at numbers
than end in zero, other than 140 (80, 90, ..., 180) to account for rounding.
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Table A7: Robustness of bunching estimation to different specifications: clinics with high share
of excess zeros (substantial end digit bias)

Specifications Preferred (8) (9) (10) (11) (12) (13) (14)

N clinics 221 243 183 221 221 221 221 221

Low rounding classified as
clinics with excess zeros ≥10% ≥5% ≥20% ≥10% ≥10% ≥10% ≥10% ≥10%

Exclusion window (left of threshold) 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins 0 bins

Exclusion window (right of threshold) 0 bins 0 bins 0 bins 2 bins 0 bins 0 bins 0 bins 0 bins

Bin size 2 2 2 2 1 5 2 2

N bins left (100-139; sums to 40) 20 20 20 20 40 8 20 20

N bins right (140-180; sums to 40) 20 20 20 20 40 8 20 20

Polynomial 9 9 9 9 9 9 7 10

Results

N clinics with negative bunching 109 123 93 66 86 186 118 133

N clinics with statistically significant
negative bunching (p<0.05) 6 8 5 3 4 8 5 6

Magnitude of bunching among clinics with significant bunching (p<0.05)

Mean -0.49 -0.45 -0.52 -0.66 -0.52 -0.2 -0.51 -0.45

Median -0.51 -0.51 -0.52 -0.53 -0.53 -0.19 -0.53 -0.47

Minimum -0.62 -0.62 -0.62 -0.96 -0.65 -0.33 -0.62 -0.62

Maximum -0.3 -0.22 -0.4 -0.48 -0.37 -0.15 -0.31 -0.26

Note: Table reports estimates of the magnitude of bunching under alternative specifications (columns). First,
clinics are classified into “high rounders" or “low rounders" depending on the share of excess zeros observed in
their distributions (5-20%), and this table includes high rounding clinics only. Polynomial refers to the numeric
value for the order of polynomial for counterfactual fit. All specifications are estimated on systolic blood pressures
100-180 with 40 units on either side of the threshold (140). All specifications include fixed effects at numbers
than end in zero, other than 140 (80, 90, ..., 180) to account for rounding.

9



A.6 Bunching in Blood Pressure and Distributions of Placebo Biomarkers

Figure A3: Histogram of Systolic Blood Pressure by High vs. Low Discretion and High vs. Low
Rounding Clinics
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Note: Histogram of systolic blood pressure in EHR data by whether the estimated magnitude of discretion is
above or below the median among high or low rounding clinics.
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Figure A4: Bunching Not Observed in Placebo Biomarkers by High vs. Low Discretion and High
vs. Low Rounding Clinics

Panel A: Weight

bunching_median: 1

low_rounding: 0

bunching_median: 1

low_rounding: 1

bunching_median: 0

low_rounding: 0

bunching_median: 0

low_rounding: 1

50 75 100 125 25 50 75 100 125

25 50 75 100 125 50 75 100 125

0

500

1,000

1,500

2,000

0

500

1,000

1,500

2,000

2,500

0

10,000

20,000

0

200

400

600

Weight (kg)

N
 V

is
its

Panel B: LDL Cholesterol

bunching_median: 1

low_rounding: 0

bunching_median: 1

low_rounding: 1

bunching_median: 0

low_rounding: 0

bunching_median: 0

low_rounding: 1

0 100 200 0 100 200

0 100 200 0 100 200

0

100

200

300

400

0

200

400

600

0

2,000

4,000

6,000

0

50

100

150

LDL Cholesterol (mg/dL)

N
 V

is
its

Note: Histogram of weight (panel A) and LDL cholesterol (panel B) in EHR data by whether the estimated
magnitude of discretion is above or below the median among high or low rounding clinics.
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A.7 Mean outcomes by blood pressure bin

Figure A5: Trends in Outcomes by Blood Pressure Bins
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Note: Unadjusted mean outcomes by 10-unit systolic blood pressure bin, at clinics with high vs. low discretion.
The range of blood pressure where discretion is likely applied, bins 130-150, are excluded as mean outcomes are
expected to differ over this range.
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A.8 Placebo Outcomes

Table A8: Impact of Discretion on Placebo Outcomes: Hospitalizations 3, 6, and 12 Months After
Primary Care Visit

Non-cardiovascular hospitalization DM2 hospitalization, among diagnosed

≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo.

(1) (2) (3) (4) (5) (6)

Discretion x BP<140 −0.0002 0.0003 −0.00003 −0.0004 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Discretion −0.00001 −0.0004 0.0002 0.001 0.0001 −0.002
(0.0005) (0.001) (0.001) (0.001) (0.002) (0.002)

BP<140 0.0001 −0.001∗ −0.003∗∗∗ 0.0001 −0.002∗ −0.005∗∗∗

(0.0005) (0.001) (0.001) (0.001) (0.001) (0.002)

Observations 619,907 619,907 619,907 177,083 177,083 177,083
Mean dep. var.(%) 0.024 0.046 0.086 0.027 0.051 0.096
Clinics 257 257 257 254 254 254

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2) on placebo outcomes. BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below
140. Discretion is a continuous variable for the estimated magnitude of bunching at the clinic, normalized to mean
0, standard deviation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of
discretionary clinical decision-making. DM2 stands for type 2 diabetes. Each dependent variable is an indicator
for if the patient was hospitalized with the listed condition, within 3, 6 or 12 months of their primary care visit,
zero otherwise. Robust standard errors clustered at the primary care clinic level are in parentheses. All models
include fixed effects for male, 1-year age, year and quarter of primary care visit.
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Table A9: Impact of Discretion on Placebo Outcomes: Clinical Decisions and Biomarkers

Tests done at encounter: Biomarkers: New diagnosis of:

Blood glucose Cholesterol Weight Height Log weight Log height Dyslipidemia Type 2 diabetes

(1) (2) (3) (4) (5) (6) (7) (8)

Discretion x BP<140 0.0003 0.003 0.001 0.002 0.001 −0.0003 −0.001 −0.003
(0.003) (0.005) (0.001) (0.001) (0.001) (0.0004) (0.003) (0.005)

Discretion 0.015 0.005 0.003 0.003 −0.0004 0.001 0.009 −0.006
(0.009) (0.012) (0.002) (0.003) (0.001) (0.001) (0.006) (0.006)

BP<140 −0.002 0.020∗∗∗ 0.004∗∗∗ 0.005∗∗∗ −0.039∗∗∗ −0.003∗∗∗ 0.059∗∗∗ 0.007∗

(0.004) (0.004) (0.001) (0.002) (0.001) (0.0003) (0.003) (0.004)

Observations 619,907 619,907 619,907 619,907 619,907 619,907 619,907 619,907
Mean dep. var. 0.566 0.594 0.96 0.937 4.318 5.065 0.641 0.286
Clinics 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equation (2) on placebo outcomes. BP< 140 is
an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a continuous variable for the estimated magnitude of bunching at the
clinic, normalized to mean 0, standard deviation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary clinical
decision-making. DM2 stands for type 2 diabetes. Tests done at encounter and new diagnosis variables are indicators. Weight is measured in kilograms and
log transformed. Height is measured in centimeters and log transformed. Robust standard errors clustered at the primary care clinic level are in parentheses.
All models include fixed effects for male, 1-year age, year and quarter of primary care visit.
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A.9 Robustness: Parameterization of Discretion
For sensitivity analyses I construct four other variables that measure discretion. First, the magni-
tude of bunching for all clinics (regardless of statistical significance), normalized to mean zero,
standard deviation one. Second, the magnitude of bunching for clinics with negative bunching,
regardless of statistical significance, normalized to mean zero, standard deviation one. Third, I
examine the extensive margin by constructing an indicator for if the clinic’s bunching estimate is
negative and statistically significant, zero otherwise. Last, I apply an adaptive shrinkage estima-
tor [Stephens et al., 2016], to adjust for the false discovery rate (FDR) in the dependent variable,
which represents the magnitude of bunching across all clinics, regardless of statistical significance.
I then normalize this variable to have a mean of zero and a standard deviation of one.

In each of the independent variables constructed, a higher value indicates more excess mass
below the diagnostic threshold and missing mass above it. The four independent variables yield
very similar estimated effects. Figures A6, A7, and A8 display coefficients and 95% confidence
intervals for all main outcomes estimated with each of the four independent variables.

For the FDR-adjusted version of the independent variable, I also present full versions of the
main results tables (A10 to A12). Here, while the lower rate of heart attack among patients exposed
to discretion is no longer statistically significant, the results are qualitatively the same: discretion
does not impact adherence to clinical guidelines, but patients affected by discretion are of lower
cardiovascular risk (measured by strokes), and are more likely to be older males.
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Figure A6: Comparison of results under different parameterizations of the magnitude of discre-
tion: adherence to clinical practice guidelines
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Note: This figure presents the impact of discretion on key outcomes, under different discretion specifications.
Point estimates for (Discretion x BP<140) and 95% confidence intervals shown from equation (2) are shown.
Each outcome is estimated five separate times with different treatment variables. The preferred treatment variable,
used everywhere else in this paper, is shown in black. This is the magnitude of discretion among clinics with
negative discretion that was different from zero at alpha=0.05 significance level, zero otherwise. The treatment
variable with the square marker is an indicator for if the clinic had a magnitude of negative discretion that was
different from zero at alpha=0.05 significance level, zero otherwise. The treatment variable with the triangle
marker is the magnitude of discretion for clinics with negative discretion (regardless of statistical significance),
normalized to mean zero, SD 1. The treatment variable with the diamond marker is the magnitude of discretion for
all clinics (regardless of statistical significance), normalized to mean zero, SD 1. The treatment variable with the
star marker is the magnitude of discretion for all clinics (regardless of statistical significance), false discovery rate
(FDR) adjusted and normalized to mean zero, SD 1. Diagnosis and prescription are indicators for if the patient
received a new diagnosis or prescription at the visit.
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Figure A7: Comparison of results under different parameterizations of the magnitude of discre-
tion: cardiovascular hospitalizations
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Note: This figure presents the impact of discretion on key outcomes, under different discretion specifications.
Point estimates for (Discretion x BP<140) and 95% confidence intervals shown from equation (2) are shown.
Each outcome is estimated five separate times with different treatment variables. The preferred treatment variable,
used everywhere else in this paper, is shown in black. This is the magnitude of discretion among clinics with
negative discretion that was different from zero at alpha=0.05 significance level, zero otherwise. The treatment
variable with the square marker is an indicator for if the clinic had a magnitude of negative discretion that was
different from zero at alpha=0.05 significance level, zero otherwise. The treatment variable with the triangle
marker is the magnitude of discretion for clinics with negative discretion (regardless of statistical significance),
normalized to mean zero, SD 1. The treatment variable with the diamond marker is the magnitude of discretion
for all clinics (regardless of statistical significance), normalized to mean zero, SD 1. The treatment variable with
the star marker is the magnitude of discretion for all clinics (regardless of statistical significance), false discovery
rate (FDR) adjusted and normalized to mean zero, SD 1. Stroke, heart attack, and heart failure each are indicators
for hospitalization with the event within six months of the primary care visit, and are each multiplied by 100 so
they can be interpreted as percentages.
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Figure A8: Comparison of results under different parameterizations of the magnitude of discre-
tion: patient characteristics
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Note: This figure presents the impact of discretion on key outcomes, under different discretion specifications.
Point estimates for (Discretion x BP<140) and 95% confidence intervals shown from equation (2) are shown.
Each outcome is estimated five separate times with different treatment variables. The preferred treatment variable,
used everywhere else in this paper, is shown in black. This is the magnitude of discretion among clinics with
negative discretion that was different from zero at alpha=0.05 significance level, zero otherwise. The treatment
variable with the square marker is an indicator for if the clinic had a magnitude of negative discretion that was
different from zero at alpha=0.05 significance level, zero otherwise. The treatment variable with the triangle
marker is the magnitude of discretion for clinics with negative discretion (regardless of statistical significance),
normalized to mean zero, SD 1. The treatment variable with the diamond marker is the magnitude of discretion
for all clinics (regardless of statistical significance), normalized to mean zero, SD 1. The treatment variable with
the star marker is the magnitude of discretion for all clinics (regardless of statistical significance), false discovery
rate (FDR) adjusted and normalized to mean zero, SD 1. Each dependent variable is an indicator for if the patient
has the characteristic. Severe obesity is body mass index ≥ 35.
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Table A10: Impact of Discretion on Hypertension Diagnosis and Prescription (FDR adjusted)

Hypertension
Diagnosis

Hypertension
Prescription

(1) (2)

Discretion x BP<140 −0.007 0.004
(0.004) (0.008)

Discretion −0.009 −0.023∗

(0.007) (0.013)

BP<140 −0.251∗∗∗ −0.169∗∗∗

(0.005) (0.005)

Observations 619,907 619,907
Mean dep. var. 0.522 0.376
Clinics 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a
continuous variable for the estimated magnitude of bunching at the clinic (normalized to mean 0 SD 1, among all
clinics, false discovery rate adjusted). The coefficient of interest is the interaction term, which is interpreted as
the impact of discretionary clinical decision-making. Robust standard errors clustered at the primary care clinic
level are in parentheses. All models include fixed effects for year and quarter of primary care visit. Hypertension
diagnosis is an indicator for if the patient was newly diagnosed. Hypertension prescription is an indicator for if
the patient was prescribed a new hypertension medication.
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Table A11: Impact of Discretion on Cardiovascular Hospitalization 3, 6, and 12 Months After Primary Care Visit (FDR adjusted)

Stroke Heart Attack Congestive Heart Failure

≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Discretion x BP<140 −0.012∗ −0.023∗∗ −0.042∗∗ −0.009 −0.018 −0.015 0.005 −0.0002 −0.014
(0.007) (0.011) (0.017) (0.008) (0.012) (0.021) (0.006) (0.008) (0.013)

Discretion 0.016∗∗ 0.027∗∗ 0.048∗∗∗ 0.004 0.009 0.004 −0.003 −0.003 0.003
(0.007) (0.011) (0.016) (0.008) (0.011) (0.019) (0.004) (0.006) (0.011)

BP<140 −0.029∗∗∗ −0.061∗∗∗ −0.106∗∗∗ −0.025∗∗∗ −0.062∗∗∗ −0.119∗∗∗ 0.010 0.013 0.004
(0.005) (0.009) (0.014) (0.009) (0.013) (0.019) (0.007) (0.010) (0.014)

Observations 619,907 619,907 619,907 619,907 619,907 619,907 619,907 619,907 619,907
Mean dep. var.(%) 0.029 0.066 0.137 0.109 0.205 0.385 0.062 0.124 0.232
Clinics 257 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equation (2). BP< 140 is an indicator for if recorded
systolic blood pressure (BP) was below 140. Discretion is a continuous variable for the estimated magnitude of bunching at the clinic (normalized to mean 0
SD 1, among all clinics, false discovery rate adjusted). The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary
clinical decision-making. All dependent variables in this table are multiplied by 100. Each dependent variable is an indicator for if the patient was hospitalized
with the listed condition, within 3, 6 or 12 months of their primary care visit, zero otherwise. Robust standard errors clustered at the primary care clinic level
are in parentheses. All models include fixed effects for male, 1-year age, year and quarter of primary care visit. Stroke includes any cerebral infarction (ICD-10
codes I63). Heart attack includes acute coronary syndrome, myocardial infarction, and any other condition associated with sudden, reduced blood flow to the
heart (I20-22, I24-25). Congestive heart failure is I50.
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Table A12: Selection by Patient Characteristics Representative of High Cardiovascular Risk (FDR
adjusted)

Male
Severe
Obesity Age 55+ Age 65+

(1) (2) (3) (4)

Discretion x BP<140 −0.005∗∗ 0.001 −0.002 −0.004∗

(0.002) (0.001) (0.003) (0.002)

Discretion 0.005∗∗∗ −0.004 −0.005 −0.007
(0.002) (0.003) (0.005) (0.005)

BP<140 −0.096∗∗∗ −0.019∗∗∗ −0.141∗∗∗ −0.128∗∗∗

(0.002) (0.001) (0.004) (0.003)

Observations 619,907 582,880 619,907 619,907
Mean dep. var. 0.382 0.067 0.596 0.336
Clinics 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a
continuous variable for the estimated magnitude of bunching at the clinic (normalized to mean 0 SD 1, among
all clinics, false discovery rate adjusted). The coefficient of interest is the interaction term, which is interpreted
as the impact of discretionary clinical decision-making. Each dependent variable is an indicator for if the patient
has the characteristic listed, zero otherwise. Robust standard errors clustered at the primary care clinic level are
in parentheses. All models include fixed effects for year and quarter of primary care visit.
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A.10 Robustness: Narrowing the Window Around the Diagnostic Threshold
Bunching estimation finds that healthcare providers manipulate blood pressure, so my preferred
analyses do not conditioning on blood pressure (beyond above vs. below 140), as this may bias the
results. However, showing that the impact of discretion on hospitalizations is driven by systolic
blood pressure values were we expect missing or excess mass to occur can help support the finding
that provider discretion leads to better sorting by patient risk. In figure A9 I plot mean hospital-
ization with stroke or heart attack, by 10 and 20 unit bins of systolic blood pressure, and stratified
by clinics with vs. without bunching significant at the 5% level. Bars indicate 95% confidence
intervals and are adjusted for clustering at the clinic level. Second, I also re-estimate main results
tables (tables 2, 3, and 4) conditional on patients with a recorded systolic blood pressure of 90-160
mmHg, and 120-160 mmHg.

Figure A9: 1-year Hospitalization with Stroke or Heart Attack, by Systolic Blood Pressure
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Note: Mean 1-year hospitalization for stroke or heart attack, by 10 or 20 unit bins of systolic blood pressure, and
stratified by high vs. low discretion clinic. Bars indicate 95% confidence intervals and are adjusted for clustering
at the clinic level.
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Table A13: Impact of Discretion on Hypertension Diagnosis and Prescription (BP=90 to 160)

Hypertension
Diagnosis

Hypertension
Prescription

(1) (2)

Discretion x BP<140 −0.004 0.008
(0.006) (0.009)

Discretion −0.011∗ −0.021
(0.006) (0.014)

BP<140 −0.239∗∗∗ −0.160∗∗∗

(0.005) (0.005)

Observations 576,201 576,201
Mean dep. var. 0.522 0.376
Clinics 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 2 among patients with systolic blood pressure
90-160 mmHg.

Table A14: Impact of Discretion on Hypertension Diagnosis and Prescription (BP=120 to 160)

Hypertension
Diagnosis

Hypertension
Prescription

(1) (2)

Discretion x BP<140 −0.004 0.006
(0.005) (0.007)

Discretion −0.010∗ −0.020
(0.006) (0.013)

BP<140 −0.185∗∗∗ −0.125∗∗∗

(0.004) (0.004)

Observations 434,581 434,581
Mean dep. var. 0.522 0.376
Clinics 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 2 among patients with systolic blood pressure
120-160 mmHg.
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Table A15: Impact of Discretion on Cardiovascular Hospitalization 3, 6, and 12 Months After Primary Care Visit (BP=90 to 160)

≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Discretion x BP<140 −0.010 −0.031∗∗∗ −0.046∗∗∗ −0.038∗∗∗ −0.045∗∗∗ −0.042∗ −0.001 −0.001 −0.007
(0.007) (0.010) (0.017) (0.015) (0.015) (0.022) (0.007) (0.008) (0.013)

Discretion 0.009 0.031∗∗∗ 0.045∗∗∗ 0.032∗∗ 0.038∗∗ 0.037∗ −0.001 −0.005 −0.004
(0.007) (0.010) (0.015) (0.014) (0.016) (0.022) (0.006) (0.007) (0.011)

BP<140 −0.022∗∗∗ −0.048∗∗∗ −0.072∗∗∗ −0.015 −0.044∗∗∗ −0.075∗∗∗ 0.018∗∗ 0.029∗∗∗ 0.032∗∗

(0.006) (0.009) (0.014) (0.010) (0.014) (0.020) (0.007) (0.011) (0.015)

Observations 576,201 576,201 576,201 576,201 576,201 576,201 576,201 576,201 576,201
Mean dep. var.(%) 0.029 0.066 0.137 0.109 0.205 0.385 0.062 0.124 0.232
Clinics 257 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 3 among patients with systolic blood pressure 90-160 mmHg.

Table A16: Impact of Discretion on Cardiovascular Hospitalization 3, 6, and 12 Months After Primary Care Visit (BP=120 to 160)

≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo. ≤3 mo. ≤6 mo. ≤12 mo.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Discretion x BP<140 −0.011∗ −0.031∗∗∗ −0.042∗∗ −0.037∗∗ −0.043∗∗ −0.040∗ −0.001 0.002 −0.004
(0.007) (0.011) (0.018) (0.016) (0.017) (0.024) (0.008) (0.010) (0.015)

Discretion 0.009 0.031∗∗∗ 0.044∗∗∗ 0.032∗∗ 0.038∗∗ 0.036∗ −0.001 −0.006 −0.004
(0.007) (0.010) (0.015) (0.014) (0.016) (0.022) (0.006) (0.007) (0.011)

BP<140 −0.022∗∗∗ −0.047∗∗∗ −0.077∗∗∗ −0.025∗∗ −0.050∗∗∗ −0.078∗∗∗ 0.004 0.005 −0.006
(0.006) (0.010) (0.014) (0.011) (0.015) (0.021) (0.008) (0.011) (0.016)

Observations 434,581 434,581 434,581 434,581 434,581 434,581 434,581 434,581 434,581
Mean dep. var.(%) 0.029 0.066 0.137 0.109 0.205 0.385 0.062 0.124 0.232
Clinics 257 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 3 among patients with systolic blood pressure 120-160 mmHg.
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Table A17: Selection by Patient Characteristics Representative of High Cardiovascular Risk
(BP=90 to 160)

Male
Severe
Obesity Age 55+ Age 65+

(1) (2) (3) (4)

Discretion x BP<140 −0.005∗∗ 0.001 −0.003 −0.002
(0.002) (0.002) (0.003) (0.002)

Discretion 0.007∗∗∗ 0.0003 −0.009∗ −0.012∗∗

(0.002) (0.003) (0.005) (0.005)

BP<140 −0.089∗∗∗ −0.018∗∗∗ −0.123∗∗∗ −0.110∗∗∗

(0.002) (0.001) (0.003) (0.003)

Observations 576,201 542,295 576,201 576,201
Mean dep. var. 0.382 0.067 0.596 0.336
Clinics 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 4 among patients with systolic blood pressure
90-160 mmHg.

Table A18: Selection by Patient Characteristics Representative of High Cardiovascular Risk
(BP=120 to 160)

Male
Severe
Obesity Age 55+ Age 65+

(1) (2) (3) (4)

Discretion x BP<140 −0.003 0.001 −0.003 −0.002
(0.003) (0.001) (0.002) (0.002)

Discretion 0.007∗∗∗ 0.0003 −0.009∗ −0.012∗∗

(0.002) (0.003) (0.005) (0.005)

BP<140 −0.066∗∗∗ −0.012∗∗∗ −0.094∗∗∗ −0.087∗∗∗

(0.002) (0.001) (0.003) (0.003)

Observations 434,581 408,880 434,581 434,581
Mean dep. var. 0.382 0.067 0.596 0.336
Clinics 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table replicates table 4 among patients with systolic blood pressure
120-160 mmHg.
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A.11 Impact of Discretion among Alive Patients
To definitively conclude that discretion leads to a more accurate sorting of patients on either side of
the diagnostic threshold in terms of health I would ideally measure effects on patient mortality. One
limitation of this analysis is that mortality is unobserved. To address this limitation I re-estimate
the effect of discretion on cardiovascular hospitalizations among patients who are known to be
alive for at least 3, 6, or 12 months after their initial primary care visit. For this group, admission
to the hospital for a cardiovascular event is considered the most severe adverse health outcome
related to high blood pressure.

In practice, if a patient has another primary care visit or is hospitalized after the initial visit, we
can conclude they were alive during the interim. 85.4% of patients are re-observed 3 months after
their first visit, 82.7% within 6 months, and 77.0% within 12 months (table A19). Patients who
are not observed during this time period may have left the country, transitioned to private health
care, simply not had a scheduled appointment nor fallen ill, or may have died. However, we cannot
distinguish between these events.

First, I find that retention in the sample is unrelated to clinic level discretion (Table A20), and
so in Tables A21 and A22 each model is estimated conditional on the patient being re-observed
during the relevant time frame.

I find no impact of discretion on all-cause hospitalization among the retained sample (Table
A21). After conditioning on retained patients, the effect of discretion on cardiovascular hospi-
talization is similar to when the full sample is used: a one standard deviation in discretion is
associated with a lower rate of stroke hospitalization of 0.02 to 0.06 within 3 to 6 months. For
heart attack the results are also similar: a one standard deviation in discretion is associated with a
lower rate of stroke hospitalization of 0.02 to 0.03 within 3 to 6 months. While the magnitudes are
very similar to when the full sample is used (see Table 3), the estimates are slightly less precise,
likely driven by the smaller number of observations used here. Overall, these results confirm that
discretion leads to improved sorting of patients by risk with respect to the diagnostic threshold.

Table A19: Sample of Primary Care 3, 6, and 12 Months After Initial Visit

Yes No % Yes % No
Observed again after 3 months 529,497 90,410 85.4 14.6
Observed again after 6 months 512,475 107,432 82.7 17.3
Observed again after 12 months 477,079 142,828 77.0 23.0

Note: This table describes the number of patients who were observed a second time (or more) in the electronic
health records or hospitalization data, 3, 6, or 12 months after their initial primary care visit. Because they were
observed again these patients are considered living during this period.
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Table A20: Impact of Bunching on Time Patient is Observed in the Data

Retained 3 mo. Retained 6 mo. Retained 12 mo.

(1) (2) (3)

Bunch x BP<140 0.003 0.002 0.002
(0.003) (0.003) (0.003)

Bunch −0.003 −0.005 −0.007
(0.005) (0.005) (0.007)

BP<140 −0.006∗∗∗ −0.006∗∗∗ −0.005∗∗

(0.002) (0.002) (0.002)

Observations 619,907 619,907 619,907
Mean dep. var. 0.854 0.827 0.77
Clinics 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2), of the impact of discretion on the probability that the patient was re-observed in the data within 3, 6,
or 12 months. BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion
is a continuous variable for the estimated magnitude of bunching at the clinic, normalized to mean 0, standard
deviation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary
clinical decision-making. Robust standard errors clustered at the primary care clinic level are in parentheses. All
models include fixed effects for male, 1-year age, year and quarter of primary care visit.
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Table A21: Impact of Discretion on Any Hospitalization 3, 6, and 12 Months After Primary Care
Visit, Among Retained Patients

Hosp <3 months Hosp <6 months Hosp <12 months

(1) (2) (3)

Discretion x BP<140 −0.072 −0.089 −0.133
(0.055) (0.071) (0.108)

Discretion 0.038 0.062 0.147
(0.060) (0.088) (0.124)

BP<140 −0.014 −0.233∗∗∗ −0.498∗∗∗

(0.051) (0.075) (0.098)

Observations 529,497 512,475 477,079
Mean dep. var.(%) 2.419 4.621 8.508
Clinics 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a
continuous variable for the estimated magnitude of bunching at the clinic, normalized to mean 0, standard de-
viation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary
clinical decision-making. Robust standard errors clustered at the primary care clinic level are in parentheses. All
models include fixed effects for male, 1-year age, year and quarter of primary care visit. Model 1 is estimated
among patients who returned to primary care or were hospitalized 3 or more months after their initial primary
care visit (85.4% of the full sample). Model 2; 6 or more months (82.7% of the full sample). Model 3; 12 or more
months (77.0% of the full sample). Dependent variables are an indicator for hospitalization for any reason within
3, 6, or 12 months of the patient’s initial primary care visit.
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Table A22: Impact of Discretion on Cardiovascular Hospitalization 3, 6, and 12 Months After Primary Care Visit, Among Retained
Patients

Within 3 months Within 6 months Within 12 months

Stroke
Heart
attack

Heart
failure Stroke

Heart
attack

Heart
failure Stroke

Heart
attack

Heart
failure

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Discretion x BP<140 −0.017 −0.020∗∗ 0.007 −0.036∗∗∗ −0.024∗ 0.007 −0.057∗∗∗ −0.025 −0.0001

(0.011) (0.009) (0.006) (0.014) (0.013) (0.011) (0.021) (0.024) (0.015)

Discretion 0.018∗ 0.013 −0.007 0.038∗∗∗ 0.021 −0.010 0.057∗∗∗ 0.020 −0.011
(0.011) (0.008) (0.004) (0.014) (0.014) (0.009) (0.021) (0.022) (0.010)

BP<140 −0.027∗∗∗ −0.019∗∗ 0.007 −0.064∗∗∗ −0.055∗∗∗ 0.0002 −0.103∗∗∗ −0.116∗∗∗ −0.026∗

(0.006) (0.010) (0.007) (0.010) (0.014) (0.011) (0.015) (0.021) (0.016)

Observations 529,497 529,497 529,497 512,475 512,475 512,475 477,079 477,079 477,079
Mean dep. var.(%) 0.027 0.106 0.055 0.063 0.198 0.109 0.124 0.368 0.195
Clinics 257 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equation (2). BP< 140 is an indicator for if recorded
systolic blood pressure (BP) was below 140. Discretion is a continuous variable for the estimated magnitude of bunching at the clinic, normalized to mean 0,
standard deviation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary clinical decision-making. Robust
standard errors clustered at the primary care clinic level are in parentheses. All models include fixed effects for male, 1-year age, year and quarter of primary
care visit. Model 1 is estimated among patients who returned to primary care or were hospitalized 3 or more months after their initial primary care visit (85.4%
of the full sample). Model 2; 6 or more months (82.7% of the full sample). Model 3; 12 or more months (77.0% of the full sample). Dependent variables are an
indicator for hospitalization for any reason within 3, 6, or 12 months of the patient’s initial primary care visit. Stroke includes any cerebral infarction (ICD-10
codes I63). Heart attack includes acute coronary syndrome, myocardial infarction, and any other condition associated with sudden, reduced blood flow to the
heart (I20-22, I24-25). Congestive heart failure (CHF) is I50.
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A.12 Other Possible Heuristic Variables

Table A23: Patient Characteristics - Age

Age 50+ Age 60+ Age 70+

(1) (2) (3)

Discretion x BP<140 −0.0002 −0.003 −0.003
(0.002) (0.002) (0.002)

Discretion 0.006∗∗ −0.002 −0.007∗

(0.003) (0.002) (0.004)

BP<140 0.033∗∗∗ −0.063∗∗∗ −0.086∗∗∗

(0.002) (0.002) (0.002)

Observations 619,907 619,907 619,907
Mean dep. var. 0.263 0.264 0.201
Clinics 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equa-
tion (2). BP< 140 is an indicator for if recorded systolic blood pressure (BP) was below 140. Discretion is a
continuous variable for the estimated magnitude of discretion at the clinic, normalized to mean 0, standard devia-
tion 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary clinical
decision-making. Each dependent variable is an indicator for if the patient is at least 50, 60, or 70 years old, zero
otherwise. Robust standard errors clustered at the primary care clinic level are in parentheses. All models include
fixed effects for year and quarter of primary care visit.
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Table A24: Selection by Patient Characteristics - Health History Questions

Was asked about family history of: Patient has family history of:

Any Heart disease Dyslipidemia CVD Any Heart disease Dyslipidemia CVD

(1) (2) (3) (4) (5) (6) (7) (8)

Discretion x BP<140 −0.006 −0.005 −0.004 −0.004 −0.002 −0.0004 0.0001 −0.001
(0.005) (0.004) (0.005) (0.004) (0.002) (0.002) (0.0004) (0.001)

Discretion −0.001 −0.0004 −0.004 −0.002 −0.007 −0.007 −0.001 −0.002
(0.012) (0.012) (0.013) (0.012) (0.005) (0.004) (0.001) (0.002)

BP<140 −0.022∗∗∗ −0.022∗∗∗ −0.021∗∗∗ −0.021∗∗∗ −0.012∗∗∗ −0.008∗∗∗ 0.004∗∗∗ −0.009∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.002) (0.002) (0.001) (0.001)

Observations 619,907 619,907 619,907 619,907 360,053 378,879 359,547 372,205
Mean dep. var. 0.63 0.611 0.58 0.6 0.212 0.139 0.024 0.067
Clinics 257 257 257 257 257 257 257 257

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents difference-in-differences results estimated using equation (2). BP< 140 is an indicator for if recorded
systolic blood pressure (BP) was below 140. Discretion is a continuous variable for the estimated magnitude of bunching at the clinic, normalized to mean
0, standard deviation 1. The coefficient of interest is the interaction term, which is interpreted as the impact of discretionary clinical decision-making. Each
dependent variable is an indicator for if the patient has the characteristic listed, zero otherwise. Robust standard errors clustered at the primary care clinic level
are in parentheses. All models include fixed effects for year and quarter of primary care visit. Models 1-4 are indicators for if any answer to the health history
question was recorded in the EHR. Models 5-8 are estimated among patients who did have the relevant health history question recorded in the EHR. CVD
stands for cardiovascular disease.
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A.13 Provider Private Information
In addition to using heuristics to help make diagnostic decisions, providers at high discretion clinics
may be using private information. Here, private information refers to anything that is observable
to the provider, but not recorded in the electronic medical record. Examples include some patient
characteristics and medical history, or the many factors that influence the quality of blood pressure
measurement, such as whether the patient was talking or had their legs crossed during measurement
(see Table A4 for Chile’s guidelines on factors that may reduce the quality of blood pressure
measurement).

To test for the importance of private information I again rely on the fact that the primary goal
of treating hypertension is to reduce the patient’s risk of future adverse cardiac events, like stroke
or heart attack. I first measure the variation in cardiovascular hospitalizations explained by systolic
blood pressure alone, or systolic blood pressure with observable patient characteristics.

Specifically, I regress an indicator for stroke and/or heart attack in the year following a primary
care visit onto blood pressure alone, and onto blood pressure plus a vector of patient characteristics
using the following equation for results in tables A25 and A26:

Yi,c = α +β1BPi +β2Xi + εic (3)

Where Yi,c is an indicator for if patient i at clinic c was hospitalized for stroke or heart attack
(ACS) within 365 days of their primary care visit. BPi is systolic blood pressure (continuous in
table A25, or an indicator for if SBP was recorded as 140 or higher table A26). Xi are patient
characteristics from the Framingham 10-year cardiovascular risk score [Anderson et al., 1991]:
an indicator for previous diagnosis with type 2 diabetes (vs. no diagnosis), an indicator for male
(vs. female), log age at visit, log total cholesterol (mg/dL), log HDL cholesterol (mg/dL), and an
indicator for self reported smoker (vs. non-smoker). Standard errors were clustered at the clinic
level. Models are estimated separately among clinics with a magnitude of bunching greater than
zero (discretion clinics), compared to clinics with zero bunching (non-discretion clinics; both at
p<0.05). Results are similar if only stroke, only ACS, are used, or if 180 or 90 day windows are
used. I test both continuous blood pressure (table A25) or blood pressure classified into above vs.
below the diagnostic threshold of 140 mmHg (table A26).

Among patients at non-discretion clinics, systolic blood pressure explains 0.1% of the variation
in future events (adjusted R-squared, column 1 table A25). After adding in relevant, observable
patient characteristics, 0.3% of the variation is explained. The explanatory power of blood pres-
sure is approximately two times higher at discretion clinics, where blood pressure may include
both signal about the patient’s health, and signal about the provider’s opinion about the patient’s
health (adjusted R-squared = 0.002, column 1 table A25). Still, more than 99% of the variation is
unexplained after accounting for clinically relevant information that is observable in the electronic
health record. Because we have seen that providers are able to make relatively good predictions
about future risk and reclassify patients accordingly (section 5.3), these findings suggest they may
also be using of private information not accounted for in these models. Finally, the increase in
adjusted R-squared at discretion clinics compared to non-discretion clinics suggests more incorpo-
ration of private information into the physician’s decision at those clinics.

It is possible the data quality varies across clinics, given that administrative data like electronic
health records rely on providers documenting information during or after a patient’s visit. Here
I test for whether the presence of variables listed in the Framingham cardiovascular risk score,
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or health history questions, is differential by the estimated magnitude of clinic discretion. Specifi-
cally, I regress the magnitude of discretion at the clinic level on an indicator for if the patient health
or history was recorded in the EHR during the visit and zero otherwise, plus year and quarter fixed
effects, with standard errors clustered at the clinic level. Figure A10 displays point estimates and
95% confidence intervals from these univariate regressions, and we observe no systematic differ-
ence in the quality of EHR data across clinic discretion. So, for this exercise missing values were
imputed with the population mean.

Figure A10: Balance in the existence of patient cardiovascular and history information

Recorded BMI

Recorded cardiovascular risk level

Recorded HDL cholsterol

Recorded history of cardiovascular disease

Recorded history of dyslipidemia

Recorded history of heart disease

Recorded smoking status

Recorded total cholesterol

Recorded type 2 diabetes status

−0.2 −0.1 0.0 0.1 0.2
Estimate with 95% confidence interval

Note: This figure tests for if patient health and history is recorded differently by magnitude of discretion. Point
estimates and 95% confidence intervals shown from the regression of clinics’ continuous and standardized bunch-
ing magnitude on indicators for if a patient health measure or history question was non-missing. Each variable is
from a separate regression and includes year and quarter fixed effects, with standard errors clustered at the clinic
level.
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Table A25: Predicting Stroke and Heart Attack with Patient Characteristics

Stroke or Heart Attack ≤12 Months (per 100)

(1) (2) (3) (4)

Blood Pressure 0.009∗∗∗ 0.006∗∗∗ 0.016∗∗∗ 0.012∗∗∗

(0.001) (0.001) (0.002) (0.002)

DM2 diagnosis 0.076∗∗∗ 0.160∗

(0.024) (0.095)

Male 0.440∗∗∗ 0.362∗∗∗

(0.025) (0.073)

Log Age 0.903∗∗∗ 1.079∗∗∗

(0.038) (0.142)

Log Total Chol. 0.245∗∗∗ −0.543
(0.089) (0.830)

Log HDL Chol. −0.241∗∗∗ −0.273
(0.041) (0.168)

Smoker 0.238∗∗∗ 0.357
(0.068) (0.276)

Constant −0.681∗∗∗ −4.714∗∗∗ −1.541∗∗∗ −1.168
(0.082) (0.567) (0.294) (4.764)

Observations 560,220 560,220 59,687 59,687
Adjusted R2 0.001 0.003 0.002 0.004
Mean dep. var.(%) 0.514 0.514 0.576 0.576
Clinics 233 233 24 24

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents OLS estimates of the association between blood pressure
and other patient characteristics and the 1-year risk of hospitalization with stroke or heart attack. Blood pressure
is continuous systolic. DM2 stands for type 2 diabetes. Chol. stands for cholesterol. Models 1-2 were estimated
among patients at clinics with no statistically significant bunching. Models 3-4 were were estimated among
patients at clinics with statistically significant bunching (p<0.05). Standard errors were clustered at the clinic
level.
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Table A26: Predicting Stroke and Heart Attack with Patient Characteristics

Stroke or Heart Attack ≤12 Months (per 100)

(1) (2) (3) (4)

Blood Pressure≥140 0.320∗∗∗ 0.201∗∗∗ 0.620∗∗∗ 0.471∗∗∗

(0.024) (0.024) (0.103) (0.098)

DM2 diagnosis 0.077∗∗∗ 0.167∗

(0.024) (0.095)

Male 0.446∗∗∗ 0.375∗∗∗

(0.025) (0.072)

Log Age 0.927∗∗∗ 1.119∗∗∗

(0.038) (0.138)

Log Total Chol. 0.246∗∗∗ −0.541
(0.089) (0.829)

Log HDL Chol. −0.242∗∗∗ −0.276
(0.041) (0.168)

Smoker 0.237∗∗∗ 0.355
(0.068) (0.275)

Constant 0.414∗∗∗ −4.118∗∗∗ 0.371∗∗∗ 0.086
(0.014) (0.554) (0.031) (4.761)

Observations 560,220 560,220 59,687 59,687
Adjusted R2 0.0004 0.003 0.001 0.004
Mean dep. var.(%) 0.514 0.514 0.576 0.576
Clinics 233 233 24 24

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents OLS estimates of the association between blood pressure
and other patient characteristics and the 1-year risk of hospitalization with stroke or heart attack. Blood pressure
≥ 140 is an indicator for if recorded systolic blood pressure (BP) was at or above 140. DM2 stands for type 2
diabetes. Chol. stands for cholesterol. Models 1-2 were estimated among patients at clinics with no statistically
significant bunching. Models 3-4 were were estimated among patients at clinics with statistically significant
bunching (p<0.05). Standard errors were clustered at the clinic level.

35



A.14 Subsequent Visits

Table A27: Clinical Actions at Subsequent Visits

Group Diagnosed at first visit Diagnosed at a
follow up visit Never diagnosed

Significant negative bunching 0 1 0 1 0 1

N patients 366,960 (65.5%) 36,333 (60.9%) 31,074 (5.5%) 4,342 (7.3%) 162,162 (28.9%) 19,010 (31.8%)
N visits 366,960 (25.2%) 36,333 (10.1%) 146,877 (64.2%) 19,132 (1.8%) 938,579 (88.6%) 101,772 (9.6%)
Mean follow up visits
until diagnosis - - 2.4 2.5 - -

Mean days until diagnosis - - 783.1 715.3 - -
Share of patients diagnosed
at their second visit - - 49.9% 46.6% - -

Note: Patients grouped into those who were diagnosed at their first visit, those diagnosed at a subsequent visit, and those never diagnosed during the study
period. They are also grouped into those with statistically significant negative bunching at their clinic, vs. not. Percent of total visits or encounters are shown
in parentheses, out of a total of 560,196 patients and 1,452,416 visits at clinics without statistically significant negative bunching, and 59,685 patients and
1,059,483 visits at clinics with statistically significant negative bunching. In bunching analyses, one visit per patient is used. Here, all visits up to and including
the diagnostic visit (if it occurs) are included. Notably, this sample is selected with respect to bunching.
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